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Lecture 2 

Drift and Diffusion 

Diffusion current: the movement of ions caused by variation in the carrier concentration. Direction of 

the diffusion current depends on the slope of the carrier concentration. 

Drift current: the movement of ions caused by electric fields. Direction of the drift current is always in 

the direction of the electric field. 

The electrical mobility 𝜇 is the ability of charged particles to move through a medium in response to an 

electric field that is pulling them. The drift velocity is given by 𝑣𝑑 = 𝜇𝐸, where 𝐸 is the applied field. 

Diffusion is described by Fick’s Law: 

𝐽diff = −𝐷
𝜕[𝐶]

𝜕𝑥
 

𝐽diff is the diffusion flux (molecule 𝑠 ∙ 𝑐𝑚2⁄ ) 

𝐷 is the diffusion coefficient (𝑐𝑚2/𝑠) 

[𝐶] is the ion concentration (molecule 𝑐𝑚3⁄ ) 

Drift is described by Ohm’s Law of Drift: 

𝐽drift = −𝜇𝑧[𝐶]
𝜕𝑉

𝜕𝑥
 

𝐽drift is the drift flux (molecule 𝑠 ∙ 𝑐𝑚2⁄ ) 

𝑉 is the electric potential resulting from charge diffusion (𝑉) 

𝜇 is the mobility (𝑐𝑚2/𝑉𝑠) 

𝑧 is the ion valency 

[𝐶] is the ion concentration (molecule 𝑐𝑚3⁄ ) 

The Nernst Equation 

Einstein’s relation between diffusion and mobility describes the connection between 𝐽diff and 𝐽drift in 

equilibrium when the net flux is equal to zero. In this case we have: 

𝐽drift + 𝐽diff = 0 

−𝜇𝑧[𝐶]
𝜕𝑉

𝜕𝑥
− 𝐷

𝜕[𝐶]

𝜕𝑥
= 0 

We can rewrite this using the chain rule: 

𝜕[𝐶]

𝜕𝑥
=
𝜕[𝐶]

𝜕𝑉

𝜕𝑉

𝜕𝑥
 

Hence we have: 



−𝜇𝑧[𝐶]
𝜕𝑉

𝜕𝑥
− 𝐷

𝜕[𝐶]

𝜕𝑉

𝜕𝑉

𝜕𝑥
= 0 

(−𝜇𝑧[𝐶] − 𝐷
𝜕[𝐶]

𝜕𝑉
)
𝜕𝑉

𝜕𝑥
= 0 

This holds at every location 𝑥, so the term in the parentheses must be zero: 

𝐷
𝜕[𝐶]

𝜕𝑉(𝑥)
= −𝜇𝑧[𝐶] 

𝐷 = −
𝜇[𝐶]

𝑞
𝜕[𝐶]
𝜕𝑉(𝑥)

 

Using the Maxwell-Boltzmann distribution, the concentration is proportional to the exponential: 

[𝐶] ∝ exp [−
𝑧𝑞𝑉(𝑥)

𝑘𝐵𝑇
] 

This allows us to compute the derivative: 

𝜕[𝐶]

𝜕𝑉(𝑥)
= −

𝑧𝑞

𝑘𝐵𝑇
[𝐶] 

Now the diffusion coefficient is given by: 

𝐷 = −
𝜇[𝐶]

−
𝑧𝑞
𝑘𝐵𝑇

[𝐶]
 

𝐷 =
𝑧𝜇𝑘𝐵𝑇

𝑞
 

Substituting this back into the expression for the total ion flux yields: 

𝐽𝑛𝑒𝑡 = 𝐽drift + 𝐽diff 

= −𝜇𝑧[𝐶]
𝜕𝑉

𝜕𝑥
− 𝐷

𝜕[𝐶]

𝜕𝑥
 

𝐽𝑛𝑒𝑡 = −(𝜇𝑧[𝐶]
𝜕𝑉

𝜕𝑥
+
𝜇𝑘𝐵𝑇

𝑞

𝜕[𝐶]

𝜕𝑥
) 

This is called the Nernst-Planck Equation. In molar form it becomes: 

𝐽

𝑁𝐴
= −(

𝜇𝑧[𝐶]

𝑁𝐴

𝜕𝑉

𝜕𝑥
+
𝜇𝑘𝐵𝑇

𝑞𝑁𝐴

𝜕[𝐶]

𝜕𝑥
) 

𝐽

𝑁𝐴
= −(𝑢𝑧[𝐶]

𝜕𝑉

𝜕𝑥
+ 𝑢

𝑅𝑇

𝐹

𝜕[𝐶]

𝜕𝑥
)  

𝑢 is the molar mobility (𝑐𝑚2 𝑉 ∙ 𝑠𝑒𝑐 ∙ 𝑚𝑜𝑙⁄ ) 

𝑅 is the ideal gas constant (1.98 𝑐𝑎𝑙 𝐾 ∙ 𝑚𝑜𝑙⁄ ) 

𝐹 is Faraday’s constant (96,480 𝐶/𝑚𝑜𝑙) 

Multiplying this equation by 𝑧𝐹 yields the current density: 



𝐼𝑛𝑒𝑡  = −(𝑢𝑧
2[𝐶]𝐹

𝜕𝑉

𝜕𝑥
+ 𝑢𝑧𝑅𝑇

𝜕[𝐶]

𝜕𝑥
) 

The Nernst equation can be derived from the current density form of the Nernst-Plank Equation when 

the net current density over the membrane is equal to zero. 

𝐼𝑛𝑒𝑡 = 0 

= (𝑢𝑧2[𝐶]𝐹
𝜕𝑉

𝜕𝑥
+ 𝑢𝑧𝑅𝑇

𝜕[𝐶]

𝜕𝑥
) 

= 𝑧𝐹[𝐶]
𝜕𝑉

𝜕𝑥
+ 𝑅𝑇

𝜕[𝐶]

𝜕𝑥
 

𝜕𝑉

𝜕𝑥
= −

𝑅𝑇

𝑧𝐹

1

[𝐶]

𝜕[𝐶]

𝜕𝑥
 

𝑉(𝑥) = −
𝑅𝑇

𝑧𝐹
 ∫

1

[𝐶]

𝜕[𝐶]

𝜕𝑥

𝑥2

𝑥1

𝑑𝑥 

𝑉(𝑥) = −
𝑅𝑇

𝑧𝐹
ln (

[𝐶𝑥2]

[𝐶𝑥1]
) 

𝐸𝑖 =
𝑅𝑇

𝑧𝑖𝐹
ln
[𝐶]𝑜𝑢𝑡
[𝐶]𝑖𝑛

 

This equation gives the potential energy for each charge across the membrane due to forces of drift and 

diffusion. There is a unique equilibrium potential (also called reversal potential) for each ion species 𝑖. If 

the membrane potential is equal to this equilibrium potential, there will be no net flow of that ion 

across the membrane. 

If a specific ion is at its equilibrium potential, it means the that inside and outside concentrations are 

such that: 

𝐸𝑖 = 𝐸𝑚 

Under typical conditions in a neuron, 𝑁𝑎+ and 𝐾+ ions are not at their equilibrium potentials. 

Reversal Potentials 

Various active pumps and exchangers plus leakage channels -> ionic concentrations inside and outside 

the cell -> reversal potential for each ion -> equilibrium membrane potential. 

The resting potential for the cell membrane as a whole is given as a weighted average of the 

concentrations and conductances of the individual ions, as expressed by the Goldman equation: 

𝐸𝑚 =
𝑅𝑇

𝐹
ln (

𝑝𝐾[𝐾
+]𝑜𝑢𝑡 + 𝑝𝑁𝑎[𝑁𝑎

+]𝑜𝑢𝑡 + 𝑝𝐶𝑙[𝐶𝑙
−]𝑜𝑢𝑡

𝑝𝐾[𝐾
+]𝑖𝑛 + 𝑝𝑁𝑎[𝑁𝑎

+]𝑖𝑛 + 𝑝𝐶𝑙[𝐶𝑙
−]𝑜𝑢𝑡

) 

Where 𝑝𝑖  is the permeability of ion 𝑖. Note that during membrane depolarisation or hyperpolarisation, 

the ionic concentration doesn’t change very much. Mostly the change in membrane potential is brought 

about by changes in the membrane permeability of a specific ion. For example, when the sodium 

channels open, 𝑝𝑁𝑎 increases dramatically, thereby pushing the membrane potential closer to the 

equilibrium potential for sodium.  



Lecture 3 

Ion Channels 

Membrane ion channels are like gates, which selectively permit or block the passage of particular ions 

across the plasma membrane. Changes in conformation of the proteins open and close the channel. The 

three major types of channels are: voltage gated, chemically gated, and mechanically gated. Channels 

can be either activated, deactivated, or inactivated (unable to open). 

 

 

Action Potential Initiation 

Action potentials are brief, all-or-nothing reversals of the membrane potential, brought about by rapid 

and transient changes in membrane ion permeability. Action potentials are generated by depolarisation 

on the surface of the membrane causing voltage-gated ion channels to open. This leads to 𝑔𝑁𝑎 

increasing, pushing the cell membrane closer to the equilibrium for sodium. However, as the cell 

continues to depolarise, voltage-gated potassium channels open, thereby increasing 𝑔𝐾 and hence 

pushing the cell membrane back towards the equilibrium potential for potassium. 



 

 

Action Potential Propagation 

The initial action potential is usually confined to a localised area on the cell membrane surface. This 

depolarised area of the cell creates a local current sink, which tends to depolarise the regions around it. 

This sets up a wave of depolarisation that spreads throughout the entire surface of the membrane. After 

the depolarisation wave passes by, the sodium channels remain inactivated for a period of time, 

resulting in an absolute refractory period. During this period, the cell cannot depolarise again, hence 

preventing the action potential from travelling backwards. 



 

Hodgkin and Huxley Model 

Hodgkin and Huxley modelled the neuron current based on the following circuit: 

 

This yields the equation: 

𝐼𝑚 = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+ 𝐼𝐾 + 𝐼𝑁𝑎 + 𝐼𝐿 

Written in terms of conductances and voltages this becomes: 

𝐼𝑚(𝑡) = 𝐶𝑚
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝐾(𝑉, 𝑡)(𝑉 − 𝐸𝐾) + 𝑔𝑁𝑎(𝑉, 𝑡)(𝑉 − 𝐼𝑁𝑎) + 𝑔𝐿(𝑉 − 𝐸𝐿) 

Note that here it has been assumed that the leakage conductance is constant with respect to time and 

voltage, and the capacitance is also assumed to be constant. The capacitance is determined by the 

phospholipid bilayer, and is not affected by the ion channels. 

Based on a series of voltage clamping experiments made with giant squid axons, Hodgkin and Huxley 

parameterised the conductances as follows: 

𝑔𝐾(𝑉, 𝑡) = 𝐺𝐾𝑛
4 

𝑔𝑁𝑎(𝑉, 𝑡) = 𝐺𝑁𝑎𝑚
3ℎ 



Where 𝐺𝑘 and 𝐺𝑁𝑎 are experimentally determined maximum conductances, and 𝑛, 𝑚, and ℎ are 

functions that describe the activation of 𝐾 channels, activation of 𝑁𝑎 channels, and inactivation of 

𝑁𝑎 channels respectively. They have the forms: 

𝑑𝑚

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

Solving these differential equations yields the following plots: 

 

Substituting in these forms we have the Hodgkin-Huxley equations: 

𝐼𝑚(𝑡) = 𝐶𝑚
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝐺𝐾𝑛

4(𝑉 − 𝐸𝐾) + 𝐺𝑁𝑎𝑚
3ℎ(𝑉 − 𝐼𝑁𝑎) + 𝑔𝐿(𝑉 − 𝐸𝐿) 

We can observe the solutions on the following plots: 



 

Lecture 4 

Synaptic transmission 

Neurons transfer signals across the synaptic cleft by releasing chemical messengers called 

neurotransmitters. These bind to postsynaptic receptors, causing ion channels to open and hence 

generating a postsynaptic potential, which can be either excitatory or inhibitory. 

Note that the words presynaptic and postsynaptic only refer to a single synapse. Most neurons are 

presynaptic to one group of neurons and postsynaptic to another group. Neurons in the CNS typically 

receive 10,000-100,000 synaptic inputs. 

Neurotransmitters 

Neurotransmitters in the presynaptic neuron are stored in the synaptic knob in vesicles.  A change in 

potential caused by an action potential triggers the opening of voltage gated Ca2+ channels in the 

synaptic knob, causing it to flow into the cell. Different neurotransmitters cause different effects on the 

postsynaptic neuron: 

• Glutamate is always excitatory. 

• Glycine is always inhibitory. 

• Norepinephrine can be either excitatory or inhibitory. 

The depolarisation or hyperpolarisation produced by release of neurotransmitters by a single 

presynaptic neuron is called a postsynaptic potential (PSP). These can either by excitatory depolarisation 

(EPSPs) or inhibitory hyperpolarisation (IPSPs). 



Neuromodulators are chemical messengers that bind to neuronal receptors but do not generate PSPs. 

Neuromodulators bring about long-term changes that modulate (depress or enhance) synaptic 

effectiveness. They may act either pre-synaptically or post-synaptically. 

Summation of PSPs 

A single PSP is usually not enough to generate an action potential. Instead, usually multiple PSPs must 

be combined. This can occur due to either spatial summation, where PSPs over different presynaptic 

inputs that are spatially separated are combined, or temporal summation, where the PSPs due to one or 

more presynaptic inputs arriving in a short period of time are added together. 

Networks of neurons 

Neurons are linked to each other through enormous networks involving convergence and divergence of 

the neural connectivity. Neural connectivity changes mostly during early development, while synaptic 

efficiency changes regularly during life. Synaptic efficiency refers to how strong a given synaptic 

connection is, and is determined by the amount of neurotransmitter released by the presynaptic 

neuron, and the magnitude of the resulting response in the postsynaptic neuron. 

Neural Coding 

Lecture 5 

Types of Neural Coding 

Neurons carry information in the timing of their action potentials. Because all action potentials are 

essentially identical, we can describe the full spike train as a sequence of firing times: 

𝐹 = {𝑡1, 𝑡2, … , 𝑡𝑛} 

We can write this in terms of the sum of idealised infinitesimally narrow spikes represented by delta 

functions: 

𝑆(𝑡) =∑𝛿(𝑡 − 𝑡𝑖)

𝑛

𝑖=1

 



 

There are many different forms of neural coding found in the brain: 

• Rate code: The average rate of firing is important (the timing of individual APs is stochastic).   

• Population code: Information is carried by the instantaneous pattern of activity of a population 

of neurons. 

• Place code: Information contained in the set of neurons that are active, where different neurons 

respond to different subsets of the receptive field.  

• Temporal code: The timing of the individual APs carries information (e.g. in phase locking). 

• Spatiotemporal code: Includes both place and temporal aspects. 

Neuron Firing Rates 

There is no single method of defining the firing rate of a neuron. The simplest method is to simply count 

the number of action potentials in time 𝑇 and divide by that interval: 

𝑟 =
1

𝑇
∫ 𝑆(𝑡)
𝑇

0

𝑑𝑡 =
𝑛(𝑇)

𝑇
 

Alternatively, one can average over several repetitions of the same stimuli for the same neuron: 

⟨𝑟⟩ =
1

𝑇
∫ ⟨𝑆(𝑡)⟩
𝑇

0

𝑑𝑡 =
⟨𝑛(𝑇)⟩

𝑇
 



 

Measuring the firing rate over time is difficult, since there are only a finite number of action potentials, 

so there is insufficient information to precisely define the rate as a continuous function over time. The 

simplest approach is to simply count the number of action potentials in a set of pre-defined and 

positioned bins. This, however, leads to a lumpy estimate which is dependent on the positioning of the 

bins. To avoid this, a window function can be integrated with the spike train, effectively allowing bins to 

be applied to each time interval:  

𝑟𝑒𝑠𝑡(𝑡) = ∫ 𝑤(𝜏)𝑆(𝜏)𝑑𝜏
∞

0

 

Potential window functions include rectangular, Gaussian, or exponential: 

𝑤(𝑡) =

{
 
 

 
 
1

∆𝑡
 for − ∆𝑡 2⁄ ≤ 𝑡 ≤ ∆𝑡 2⁄

1

√2𝜋𝜎
exp(−

𝑡2

2𝜎2
)

𝛼2𝑡 exp(−𝛼𝑡)

 

 



Population Coding 

Population codes are defined in terms of activity, which refers to the firing rate of a pool of neurons 

over a single trial. 

𝐴 =
1

∆𝑡

𝑛(∆𝑡)

𝑁
 

 

Place Coding 

Place coding involves information being encoded by which specific neurons in a particular population 

are firing, given that different neurons respond to different stimuli in accordance with their tuning 

curves. For example, typical frequency tuning curves in the normal mammalian cochlea. 

 

 



 

Temporal Coding 

Temporal coding involves information being encoded in the specific timing of the arrival of spikes, or at 

least high-frequency variation in the rate code. This provides much more precise information about the 

temporal variation of the stimulus. This can also be called correlation coding, since it entails that 

information is carried not just by the rate of firing, but by correlations between firing times. For 

example, information could be carried by spike-time intervals. 

An example of where temporal coding is used is in sound localisation, where cells only fire if they detect 

coincident activity from each ear. 

 

The measure of synchronization 𝑟 between two spike trains can be defined in terms of how much the 𝑁 

spikes arranged into 𝑀 bins, with ℎ𝑚 spikes per bin, resemble sine or cosine functions: 

𝑆𝑆 =
1

𝑁
∑ ℎ𝑚 sin (

2𝜋𝑚

𝑀
)

𝑀

𝑚=1

 

𝑆𝐶 =
1

𝑁
∑ ℎ𝑚 cos (

2𝜋𝑚

𝑀
)

𝑀

𝑚=1

 

𝑟 = √𝑆𝑠
2 + 𝑆𝐶

2 

Other mechanisms of temporal including are summarised below. 



 

The peristimulus time histogram or poststimulus time histogram, both abbreviated PSTH, are histograms 

of the times at which neurons fire relative to the time of the stimulus. 

 

Many neurons respond to place (spatial) and temporal input.  This can be quantified using a technique 

called reverse correlation, in which we determine what stimulus is responsible for neural firing. This is 

quantified using the spike-triggered average, which is the average input of the stimulus 𝑠(𝑡) 

immediately preceding each action potential at time 𝑡𝑖. 

𝐶(𝑡) =
1

𝑛
∑ 𝑠(𝑡𝑖 −

𝑛

(𝑖=1)

𝑡)  

This can be rewritten as an integral over the neural response function: 

𝐶(𝑡) =
1

𝑛
∫ 𝑆(𝑡)𝑠(𝑡 − 𝜏)
𝑇

0

𝑑𝜏  



 

Lecture 6 

Stochastic Processes 

We can model the spike times as a stochastic process, with the assumptions we make affecting the 

properties of the resulting spike train. 

• A point process is a stochastic process that generates a sequence of events, such as action 

potentials. The probability of a spike at any given time could depend on the entire history of 

preceding spikes. 

• A renewal process is a point process where the probability of an event occurring at a specific 

time depends only on the immediately preceding spike (intervals between spikes are 

independent). 

• If there is no dependence at all on preceding spikes (the spikes are statistically independent), 

the point process is called a Poisson process. 

The simplest type of point process is a homogenous Poisson process, where the firing rate is constant 

over time. 

 

spike-triggered average stimulus 



Homogenous Poisson Process 

The probability of a specific sequence of spikes occurring at arbitrary times is denoted 𝑃[𝑡1, 𝑡2, … , 𝑡𝑛]. 

Under a homogenous Poisson process, the probability of such a sequence is given by: 

𝑃[𝑡1, 𝑡2, … , 𝑡𝑛] = 𝑛! 𝑃𝑇[𝑛] (
∆𝑡

𝑇
)
𝑛

 

Where 𝑃𝑇[𝑛] is the probability of a sequence of 𝑛 spikes occurring with time 𝑇. The factor of 𝑛! Adjusts 

for the number of combinations of 𝑛 spikes that is possible, and the final term is for normalisation. 

To compute 𝑃𝑇[𝑛], we divide the time 𝑇 into 𝑀 bins of size ∆𝑡 = 𝑇/𝑀 and take the limit ∆𝑡 → 0, at 

which limit there is no possibility of two spikes occurring in the same bin. The probability of 𝑛 spikes 

appearing one each in 𝑛 bins is (𝑟∆𝑡)𝑛, while that of the remaining 𝑀 − 𝑛 bins each having no spikes is 

(1 − 𝑟∆𝑡)𝑀−𝑛. The number of ways of putting 𝑛 spikes in 𝑀 bins is given by the binominal coefficient, 

yielding the expression: 

𝑃𝑇[𝑛] = lim
∆𝑡→0

𝑀!

(𝑀 − 𝑛)! 𝑛!
(𝑟∆𝑡)𝑛(1 − 𝑟∆𝑡)𝑀−𝑛 

In taking the limit we note that since 𝑀 → ∞ whle 𝑛 is fixed (by assumption), we have 𝑀 − 𝑛 ≈ 𝑀 =

𝑇/∆𝑡, and 
𝑀!

(𝑀−𝑛)!
≈ 𝑀𝑛 = (

𝑇

∆𝑡
)
𝑛

. Thus we find: 

𝑃𝑇[𝑛] = lim
∆𝑡→0

𝑀𝑛

𝑛!
(𝑟∆𝑡)𝑛 ((1 − 𝑟∆𝑡)

−𝑟∆𝑡
−𝑟∆𝑡)

𝑇
∆𝑡

 

𝑃𝑇[𝑛] =
1

𝑛!
lim
∆𝑡→0

(
𝑇

∆𝑡
)
𝑛

(𝑟∆𝑡)𝑛 ((1 − 𝑟∆𝑡)
1

−𝑟∆𝑡)
−𝑟𝑇

  

𝑃𝑇[𝑛] =
1

𝑛!
(𝑟𝑇)𝑛 lim

∆𝑡→0
((1 − 𝑟∆𝑡)

1
−𝑟∆𝑡)

−𝑟𝑇

   

𝑃𝑇[𝑛] =
1

𝑛!
(𝑟𝑇)𝑛 exp(−𝑟𝑇)   

Substituting this into the formula for the probability of a generic sequence we have: 

𝑃[𝑡1, 𝑡2, … , 𝑡𝑛] = 𝑟
𝑛(∆𝑡)𝑛 exp(−𝑟𝑇) 

This is a Poisson distribution. 

Interspike Interval Distribution 

For a Poisson distribution, the probability of an interspike interval falling between 𝜏 and 𝜏 + 𝛥𝜏 is found 

by setting 𝑛 = 1 and 𝑇 = 𝜏 in the above formula: 

𝑃[𝜏 ≤ 𝑡𝑖+1 − 𝑡𝑖 < 𝜏 + ∆𝑡] = 𝑟∆𝑡 exp(−𝑟𝜏) 

The density function for infinitesimal ∆𝑡 becomes: 

𝑝(𝜏) = 𝑟 exp(−𝑟𝜏) 

The interspike interval therefore has the properties: 

𝜇𝜏 =
1

𝑟
 



𝜎𝜏
2 =

1

𝑟2
 

𝐶𝑉 =
𝜎𝜏
𝜇𝜏
= 1 

If the coefficient of variation of the spike count is greater than 1, this means it is not a Poisson process. 

In such cases the variance grows faster than the mean as the trial duration increases, indicating the 

presence of long-term correlations in the data. 

We can summarise this as follows. If for every t > 0 the number of arrivals in the time interval [0,t] 

follows the Poisson distribution with mean 𝑟∆𝑡, then the sequence of inter-arrival times are 

independent and identically distributed exponential random variables having mean 1/𝑟. 

Note that a Renewal Process is a generalisation of a Poisson process, in which the holding times do not 

need to be exponentially distributed. 

The Poisson Spike Generator 

A series of spikes can be generated from a known firing rate 𝑟(𝑡) using the Poisson Spike Generator 

method. Each period of time ∆𝑡, we simply generate a random number 𝑥 uniformly distributed between 

0 and 1. If 𝑥 < 𝑟(𝑡)∆𝑡, then a spike is fired, otherwise no spike is fired. This will deliver a series of 

Poisson distributed spikes (with exponential interspike intervals) so long as ∆𝑡 is small compared to 𝑟(𝑡). 

An alternative, and generally faster way to do this which works for constant firing rates, is to randomly 

draw the interspike interval instead of the number of spikes per interval, as we can skip all the intervals 

without any spikes. This works by randomyl generating a random number 𝑥 and setting ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖 

using the equation to compute the next spike time 𝑡𝑖+1: 

𝑥 = exp(−𝑟(𝑡𝑖+1 − 𝑡𝑖)) 

−𝑟(𝑡𝑖+1 − 𝑡𝑖) = ln(𝑥) 

𝑡𝑖+1 − 𝑡𝑖 = −
1

𝑟
ln(𝑥) 

𝑡𝑖+1 = 𝑡𝑖 −
1

𝑟
ln(𝑥) 

Lecture 7 

Definition of Entropy 

Entropy is a measure of variability, or the amount of information, in a set of responses. The unit of 

information is the bit, where 1 bit is the amount of information sufficient to choose between two 

equally likely alternatives. 

The information content of a single response is equal to: 

𝑠(𝑥𝑖) = − log2(𝑃[𝑥𝑖])  

The entropy of an ensemble of outcomes, namely a random variable, is: 

𝑆(𝑋) = −∑𝑃(𝑋) log2(𝑃(𝑋))

𝑖

 

For 𝐾 equally likely outcomes, the entropy becomes: 



𝑆(𝑋) = −∑
1

𝐾
log2 (

1

𝐾
)

𝑘

 

𝑆(𝑋) = log2(𝐾) 

The entropy thus turns out to be the number of digits required to write K as a binary number less one. 

Mutual Information 

Applied to the case of a stimulus 𝑠 generating firing rate outputs 𝑟, we can define the response entropy 

of the firing rate output as: 

𝑆𝑟 = −∑𝑃[𝑟] log2(𝑃[𝑟])

𝑟

 

The amount of entropy that is left over after conditioning on the stimulus is called the conditional 

entropy, and is given by: 

𝑆𝑟|𝑠 = −∑𝑃[𝑟|𝑠] log2(𝑃[𝑟|𝑠])

𝑟

 

The average conditional entropy is known as the noise entropy. It gives the amount of entropy in 𝑟 that 

is not attributable to the stimuli. It is written as: 

𝑆𝑛𝑜𝑖𝑠𝑒 =∑𝑃[𝑠]

𝑠

𝑆𝑟|𝑠 

𝑆𝑛𝑜𝑖𝑠𝑒 = −∑𝑃[𝑠]∑𝑃[𝑟|𝑠] log2 𝑃[𝑟|𝑠]

𝑟𝑠

 

The mutual information entropy is the reduction in entropy of 𝑟 that occurs when we learn the value of 

stimulus 𝑠. It thus represents how much the firing rate tells us about the stimulus. It defined as the full 

response entropy minus the noise entropy: 

𝐼𝑚 = 𝑆𝑟 − 𝑆𝑛𝑜𝑖𝑠𝑒 

= −∑𝑃[𝑟] log2(𝑃[𝑟])

𝑟

+∑𝑃[𝑠]∑𝑃[𝑟|𝑠] log2 𝑃[𝑟|𝑠]

𝑟𝑠

 

= −∑∑𝑃[𝑠]𝑃[𝑟|𝑠]

𝑠

log2(𝑃[𝑟])

𝑟

+∑∑𝑃[𝑠]𝑃[𝑟|𝑠] log2 𝑃[𝑟|𝑠]

𝑟𝑠

 

=∑∑𝑃[𝑠]𝑃[𝑟|𝑠]

𝑠

(− log2(𝑃[𝑟]) + log2 𝑃[𝑟|𝑠])

𝑟

 

𝐼𝑚 =∑∑𝑃[𝑠]𝑃[𝑟|𝑠]

𝑠

log2
𝑃[𝑟|𝑠]

𝑃[𝑟]
𝑟

  

Entropy of Spike Trains 

The information associated with a specific interspike interval of 𝜏 using time bins of size ∆𝜏 is: 

− log2(𝑝[𝜏]∆𝜏) 

To calculate the entropy associated with the source neuron, we need to take the expectation over all 

possible lengths of interspike intervals, and then multiply by the number of intervals 𝑁 =
𝑇

∆𝜏
= 𝑟𝑇: 



𝑆 = 𝑁 × 𝐸[− log2(𝑝[𝜏]∆𝜏)] 

𝑆 = −𝑟𝑇∫ 𝑝[𝜏] log2(𝑝[𝜏]∆𝜏)
∞

0

𝑑𝜏 

For a homogenous Poisson process, we have 𝑝[𝜏] = 𝑟 exp(−𝑟𝜏), making the integral: 

𝑆 = −𝑟𝑇∫ 𝑟 exp(−𝑟𝜏) log2(𝑟∆𝜏 exp(−𝑟𝜏))
∞

0

𝑑𝜏 

𝑆 = −𝑟𝑇∫ 𝑟 exp(−𝑟𝜏)
ln(𝑟∆𝜏 exp(−𝑟𝜏))

ln(2)

∞

0

𝑑𝜏 

𝑆 = −
𝑟2𝑇

ln(2)
∫ exp(−𝑟𝜏) ln(𝑟∆𝜏 exp(−𝑟𝜏))
∞

0

𝑑𝜏 

Let 𝑢 = 𝑟𝜏, 𝑑𝑢 = 𝑟𝑑𝜏 

𝑆 = −
𝑟𝑇

ln(2)
∫ exp(−𝑢) ln(𝑟∆𝜏 exp(−𝑢))
∞

0

𝑑𝑢 

= −
𝑟𝑇

ln(2)
∫ exp(−𝑢) [ln(𝑟∆𝜏) − 𝑢]
∞

0

𝑑𝑢 

= −
𝑟𝑇

ln(2)
(ln(𝑟∆𝜏)∫ exp(−𝑢)

∞

0

𝑑𝑢 − ∫ 𝑢 exp(−𝑢)
∞

0

𝑑𝑢) 

= −
𝑟𝑇

ln(2)
(ln(𝑟∆𝜏) [−exp(−𝑢)]0

∞ − [−𝑢 exp(−𝑢) − exp(−𝑢)]0
∞) 

= −
𝑟𝑇

ln(2)
(ln(𝑟∆𝜏) [1] − [− − 1]) 

= −𝑟𝑇 (log2(𝑟∆𝜏) −
1

ln(2)
) 

= −𝑟𝑇(log2(𝑟∆𝜏) − log2(𝑒)) 

= −𝑟𝑇 log2 (
𝑟∆𝜏

𝑒
)  

= 𝑟𝑇 log2 (
𝑒

𝑟∆𝜏
) 

= 𝑟𝑇(log2(𝑒) − log2(𝑟∆𝜏)) 

= 𝑟𝑇 log2(𝑒) (1 −
log2(𝑟∆𝜏)

log2(𝑒)
) 

𝑆 =
𝑟𝑇

ln(2)
(1 − ln(𝑟∆𝜏)) 

Entropy is maximised at the rate: 

𝑑𝑆

𝑑𝑟
=

𝑇

ln(2)
(1 − ln(𝑟∆𝜏)) +

𝑟𝑇

ln(2)
(−

∆𝜏

𝑟∆𝜏
) 

𝑇

ln(2)
(1 − ln(𝑟∆𝜏)) =

𝑟𝑇

ln(2)
(
∆𝜏

𝑟∆𝜏
) 

(1 − ln(𝑟∆𝜏)) = 1 

ln(𝑟∆𝜏) = 0 

𝑟∆𝜏 = 1 

𝑟 =
1

∆𝜏
 



Neuron Models 

Summary of Neural Models 
Model Equations Notes 

McCulloh-Pitts 

𝑆𝑖(𝑡 + ∆𝑡) =

{
 
 

 
 1 if ∑𝑤𝑖𝑗𝑥𝑗(𝑡) ≥ 𝜃𝑖

𝑁

𝑗=1

0 if ∑𝑤𝑖𝑗𝑥𝑗(𝑡) < 𝜃𝑖

𝑁

𝑗=1

 

Binary output, 
deterministic 

Hopfield 
Neurons 

𝑆𝑖(𝑡 + ∆𝑡) =

{
 
 

 
 +1 with prob 𝑔 (∑𝑤𝑖𝑗𝑥𝑗(𝑡)

𝑁

𝑗=1

)        

−1 with prob 1 − 𝑔(∑𝑤𝑖𝑗𝑥𝑗(𝑡)

𝑁

𝑗=1

)

 

Binary output, stochastic. 

Firing-Rate 
Neurons 𝑆𝑖(𝑡 + ∆𝑡) = 𝑔(∑𝑤𝑖𝑗𝑥𝑗(𝑡)

𝑁

𝑗=1

− 𝜃) 

Rate-based, 
deterministic. 

Leaky Integrator 
𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐼𝑖(𝑡) 

𝑆𝑖(𝑡) = 𝑔(𝑉𝑖(𝑡) − 𝜃𝑖) 

Rate-based, 
deterministic, 
subthreshold dynamics. 

Leaky Integrate 
and Fire 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐼𝑖(𝑡) 

𝑆𝑖(𝑡) = {
𝛿(𝑡) if 𝑉𝑖(𝑡) ≥ 𝑉th
0       if 𝑉𝑖(𝑡) < 𝑉th

 

Spiking, deterministic, 
subthreshold dynamics. 

Stochastic Leaky 
Integrate and 
Fire 

𝐶
𝑑𝑉

𝑑𝑡
+
𝑉

𝑅
= 𝑎𝑒

𝑑𝑁𝑒(𝑡)

𝑑𝑡
− 𝑎𝑖

𝑑𝑁𝑖(𝑡)

𝑑𝑡
 

𝑆(𝑡) = {
𝛿(𝑡) if 𝑉(𝑡) ≥ 𝑉th
0       if 𝑉(𝑡) < 𝑉th

   

Spiking, stochastic, 
subthreshold dynamics. 

Conductance-
based Neurons 

 𝐼(𝑡) = 𝑔(𝑡 − 𝑡𝑖𝑛)(𝑉𝐸 − 𝑉(𝑡)) 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+
𝑉(𝑡)

𝑅
= 𝑔 (𝑉𝑠𝑦𝑛 − 𝑉(𝑡)) 

𝑆(𝑡) = {
𝛿(𝑡) if 𝑉(𝑡) ≥ 𝑉th
0       if 𝑉(𝑡) < 𝑉th

 

Spiking, deterministic, 
subthreshold dynamics, 
conductance-based. 

Hodgkin-Huxley 
neuron 

𝐼𝑚 = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+ 𝑔𝐾(𝑉 − 𝑉𝐾) + 𝑔𝑁𝑎(𝑉 − 𝑉𝑁𝑎)

+ 𝑔𝐿(𝑉 − 𝑉𝐿) 

𝑔𝐾(𝑉, 𝑡) = 𝐺𝐾𝑛
4 

𝑔𝑁𝑎(𝑉, 𝑡) = 𝐺𝑁𝑎𝑚
3ℎ 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

Spiking, deterministic, 
subthreshold dynamics, 
conductance-based. 

FitzHugh-
Nagumo 

𝑑𝑉

𝑑𝑡
= 𝑉 −

𝑉3

3
−𝑊 + 𝐼 

𝑑𝑊

𝑑𝑡
= 𝜙(𝑉 + 𝑎 − 𝑏𝑊) 

Spiking, deterministic, 
subthreshold dynamics, 
conductance-based. 



Lecture 8 

McCulloch-Pitts Neurons 

The simplest neuron model, in which the output of the point neuron is either 0 or 1, and the activity is 

computed incrementally at discrete moments of time in terms of the 𝑗 = 1,… ,𝑁 inputs neurons, each 

with activity 𝑥𝑗. The output 𝑆𝑖 at the next time step is given in terms of the output threshold 𝜃𝑖: 

𝑆𝑖(𝑡 + ∆𝑡) =

{
 
 

 
 1 if ∑𝑤𝑖𝑗𝑥𝑗(𝑡) ≥ 𝜃𝑖

𝑁

𝑗=1

0 if ∑𝑤𝑖𝑗𝑥𝑗(𝑡) < 𝜃𝑖

𝑁

𝑗=1

 

Hopfield Neurons 

This adds stochastic behaviour to the McCulloch-Pitts neuron. 

𝑆𝑖(𝑡 + ∆𝑡) =

{
 
 

 
 +1 with prob 𝑔 (∑𝑤𝑖𝑗𝑥𝑗(𝑡)

𝑁

𝑗=1

)        

−1 with prob 1 − 𝑔(∑𝑤𝑖𝑗𝑥𝑗(𝑡)

𝑁

𝑗=1

)

 

Where 𝑔(ℎ) =
1

1+exp(−𝛽ℎ)
, with 𝛽 being the inverse temperature, a measure of noise. In the limit where 

𝛽 → ∞, the rule becomes deterministic and the Hopfield neuron reduces to the McCulloch-Pitts neuron. 

 

Firing-Rate Neurons 

In these models the neural output is not binary, but is described as a firing rate: 

𝑆𝑖(𝑡 + ∆𝑡) = 𝑔(∑𝑤𝑖𝑗𝑥𝑗(𝑡)

𝑁

𝑗=1

− 𝜃)  

The activation function 𝑔 can take various forms, such as a sigmoid or threshold-linear function. 



Leaky Integrator Neurons 

Continuous time rate-based models are sometimes called ‘leaky integrators’, as they simulate a 

membrane potential which gradually adds up input signals over time. The evolution of synaptic voltage 

in such models is given by the equation: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐼𝑖(𝑡) 

This is essentially an RC-circuit, with time constant 𝜏 = 𝑅𝐶, which acts like a low-pass filter. 

 

The output in terms of firing rate is written as a function of the voltage and the threshold: 

𝑆𝑖(𝑡) = 𝑔(𝑉𝑖(𝑡) − 𝜃𝑖) 

In response to a step current 𝐼 switched on at 𝑡 = 0, the voltage is given by: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐼 

𝑉𝑖
′ +

1

𝑅𝐶
𝑉𝑖 =

𝐼

𝐶
 

Solve using the integrating factor 𝑒∫
1

𝑅𝐶
𝑑𝑡: 

𝑉𝑖
′𝑒∫

1
𝑅𝐶
𝑑𝑡 +

1

𝑅𝐶
𝑉𝑖𝑒

∫
1
𝑅𝐶
𝑑𝑡 =

𝐼

𝐶
𝑒∫

1
𝑅𝐶
𝑑𝑡 

𝑑

𝑑𝑡
[𝑉𝑖𝑒

(
𝑡
𝑅𝐶
)
] =

𝐼

𝐶
𝑒
(
𝑡
𝑅𝐶
)
 

∫
𝑑

𝑑𝑡
[𝑉𝑖𝑒

(
𝑡
𝑅𝐶
)
]

𝑡′

0

𝑑𝑡 =
𝐼

𝐶
∫ 𝑒

(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 

[𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
]
0

𝑡′

= 𝐼𝑅 [𝑒
(
𝑡
𝑅𝐶
)
]
0

𝑡′

 

𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
− 𝑉𝑖(𝑡 = 0) = 𝐼𝑅 [𝑒

(
𝑡
𝑅𝐶
)
− 1] 

𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
= 𝐼𝑅 [𝑒

(
𝑡
𝑅𝐶
)
− 1] + 𝑉𝑖

0 

𝑉𝑖(𝑡) = 𝐼𝑅[1 − 𝑒
(−𝑡 𝑅𝐶⁄ )] + 𝑉𝑖

0𝑒(−𝑡 𝑅𝐶⁄ ) 

For very large values of 𝑅𝐶 and 𝑉𝑖(𝑡 = 0) = 0: 

𝑉𝑖(𝑡) ≈ 𝐼𝑅 [1 − (1 + (
−𝑡

𝑅𝐶
))] 

𝑉𝑖(𝑡) =
𝐼

𝐶
𝑡 



 

Given the firing rate, a series of output spikes can be generated by modelling the neuron as a Poisson 

neuron, in which output spikes are generated randomly as an inhomogeneous Poisson process governed 

by the time-varying output rate 𝑆𝑖(𝑡) = 𝑔(𝑉𝑖(𝑡) − 𝜃𝑖), which depends on the voltage. 

Continuous output rate-based neurons can be combined to form neural networks. In this case the 

synaptic input is added to the input current: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐼𝑖(𝑡) +∑𝑤𝑖𝑗

𝑁

𝑗=1

𝑆𝑗(𝑡)  

𝑆𝑖(𝑡) = 𝑔(𝑉𝑖(𝑡) − 𝜃𝑖)  

Delta function current 

The simplest model of synaptic inputs is instantaneous current injection: 

𝐼𝑠𝑦𝑛(𝑡) =∑𝑤𝑖𝑗

𝑁

𝑗=1

∑𝛿(𝑡 − 𝑡𝑗𝑘)

𝑘

 

Where 𝑡𝑗𝑘 is the time when the 𝑗th input neuron fires its 𝑘th spike. 

For simplicity, we can consider a single spike at one synapse of the form: 

𝐼𝑠𝑦𝑛(𝑡) = 𝐶𝑎𝛿(𝑡 − 𝑡𝑖𝑛) 

In this case the output becomes: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐶𝑎𝛿(𝑡 − 𝑡𝑖𝑛) 

𝑉𝑖
′ +

1

𝑅𝐶
𝑉𝑖 = 𝑎𝛿(𝑡 − 𝑡𝑖𝑛) 

Solve using the integrating factor 𝑒∫
1

𝑅𝐶
𝑑𝑡: 

𝑉𝑖
′𝑒∫

1
𝑅𝐶
𝑑𝑡 +

1

𝑅𝐶
𝑉𝑖𝑒

∫
1
𝑅𝐶
𝑑𝑡 = 𝑎𝛿(𝑡 − 𝑡𝑖𝑛)𝑒

∫
1
𝑅𝐶
𝑑𝑡 



𝑑

𝑑𝑡
[𝑉𝑖𝑒

(
𝑡
𝑅𝐶
)
] = 𝑎𝛿(𝑡 − 𝑡𝑖𝑛)𝑒

(
𝑡
𝑅𝐶
)
 

∫
𝑑

𝑑𝑡
[𝑉𝑖𝑒

(
𝑡
𝑅𝐶
)
]

𝑡′

0

𝑑𝑡 = 𝑎∫ 𝛿(𝑡 − 𝑡𝑖𝑛)𝑒
(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 

For the RHS we need 𝑡 − 𝑡𝑖𝑛 > 0, so use Heaviside function: 

[𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
]
0

𝑡′

= 𝑎𝐻(𝑡 − 𝑡𝑖𝑛)𝑒
(
𝑡𝑖𝑛
𝑅𝐶
)
 

𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
− 𝑉𝑖(𝑡 = 0) = 𝑎𝐻(𝑡 − 𝑡𝑖𝑛)𝑒

(
𝑡𝑖𝑛
𝑅𝐶
)
 

𝑉𝑖(𝑡) = 𝑎𝐻(𝑡 − 𝑡𝑖𝑛)𝑒
−(𝑡−𝑡𝑖𝑛)/𝑅𝐶 

 

Exponential current 

Alternatively, the synaptic input can be modelled as an exponential current: 

𝐼𝑠𝑦𝑛(𝑡) = 𝐻(𝑡 − 𝑡𝑖𝑛)
𝐶𝑎

𝜏𝑠
exp(−(𝑡 − 𝑡𝑖𝑛)/𝜏𝑠) 

In this case the output becomes: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐻(𝑡 − 𝑡𝑖𝑛)

𝐶𝑎

𝜏𝑠
exp(−(𝑡 − 𝑡𝑖𝑛)/𝜏𝑠) 

𝑉𝑖
′ +

1

𝑅𝐶
𝑉𝑖 = 𝐻(𝑡 − 𝑡𝑖𝑛)

𝑎

𝜏𝑠
exp(−(𝑡 − 𝑡𝑖𝑛)/𝜏𝑠) 

Solve using the integrating factor 𝑒∫
1

𝑅𝐶
𝑑𝑡: 

𝑉𝑖
′𝑒∫

1
𝑅𝐶
𝑑𝑡 +

1

𝑅𝐶
𝑉𝑖𝑒

∫
1
𝑅𝐶
𝑑𝑡 = 𝐻(𝑡 − 𝑡𝑖𝑛)

𝑎

𝜏𝑠
exp (−

(𝑡 − 𝑡𝑖𝑛)

𝜏𝑠
)𝑒∫

1
𝑅𝐶
𝑑𝑡 

𝑑

𝑑𝑡
[𝑉𝑖𝑒

(
𝑡
𝑅𝐶
)
] = 𝐻(𝑡 − 𝑡𝑖𝑛)

𝑎

𝜏𝑠
exp (−

(𝑡 − 𝑡𝑖𝑛)

𝜏𝑠
)𝑒

(
𝑡
𝑅𝐶
)
 



∫
𝑑

𝑑𝑡
[𝑉𝑖𝑒

(
𝑡
𝑅𝐶
)
]

𝑡′

0

𝑑𝑡 =
𝑎

𝜏𝑠
∫ 𝑒

(−
𝑡−𝑡𝑖𝑛
𝜏𝑠

+
𝑡
𝑅𝐶
)

𝑡′

𝑡𝑖𝑛

𝑑𝑡 

[𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
]
0

𝑡′

=
𝑎

𝜏𝑠
∫ 𝑒

−
𝑅𝐶
𝜏2𝑅𝐶

𝑡+
𝑡𝑖𝑛𝑅𝐶
𝜏𝑠𝑅𝐶

+
𝜏𝑠
𝑅𝐶𝜏𝑠

𝑡
𝑡′

𝑡𝑖𝑛

𝑑𝑡 

𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
− 𝑉𝑖(𝑡 = 0) =

𝑎

𝜏𝑠
𝑒
(
𝑡𝑖𝑛
𝜏𝑠
)
∫ 𝑒

(
𝜏𝑠−𝑅𝐶
𝑅𝐶𝜏𝑠

)𝑡
𝑡′

𝑡𝑖𝑛

𝑑𝑡 

𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
=
𝑎

𝜏𝑠
𝑒
(
𝑡𝑖𝑛
𝜏𝑠
) 𝑅𝐶𝜏𝑠
𝜏𝑠 − 𝑅𝐶

𝐻(𝑡 − 𝑡𝑖𝑛) [𝑒
(
𝜏𝑠−𝑅𝐶
𝑅𝐶𝜏𝑠

)𝑡
]
𝑡𝑖𝑛

𝑡′

 

𝑉𝑖𝑒
(
𝑡
𝑅𝐶
)
= 𝑎𝑒

(
𝑡𝑖𝑛
𝜏𝑠
) 𝑅𝐶

𝜏𝑠 − 𝑅𝐶
𝐻(𝑡 − 𝑡𝑖𝑛) (𝑒

(
𝜏𝑠−𝑅𝐶
𝑅𝐶𝜏𝑠

)𝑡
− 𝑒

(
𝜏𝑠−𝑅𝐶
𝑅𝐶𝜏𝑠

)𝑡𝑖𝑛
) 

Setting 𝑅𝐶 = 𝜏 we can simplify this to: 

𝑉𝑖(𝑡) =
𝑎𝜏

𝜏𝑠 − 𝜏
𝑒
(
𝑡𝑖𝑛
𝜏𝑠
−
𝑡
𝜏
)
𝐻(𝑡 − 𝑡𝑖𝑛) (𝑒

(
𝜏𝑠−𝜏
𝜏𝜏𝑠

)𝑡
− 𝑒

(
𝜏𝑠−𝜏
𝜏𝜏𝑠

)𝑡𝑖𝑛) 

=
𝑎𝜏

𝜏𝑠 − 𝜏
𝐻(𝑡 − 𝑡𝑖𝑛) (𝑒

(
𝑡
𝜏
−
𝑡
𝜏𝑠
+
𝑡𝑖𝑛
𝜏𝑠
−
𝑡
𝜏
)
− 𝑒

(
𝑡𝑖𝑛
𝜏
−
𝑡𝑖𝑛
𝜏𝑠
+
𝑡𝑖𝑛
𝜏𝑠
−
𝑡
𝜏
)
) 

=
𝑎𝜏

𝜏𝑠 − 𝜏
𝐻(𝑡 − 𝑡𝑖𝑛) (𝑒

(−
𝑡
𝜏𝑠
+
𝑡𝑖𝑛
𝜏𝑠
)
− 𝑒

(
𝑡𝑖𝑛
𝜏
−
𝑡
𝜏
)
) 

𝑉𝑖(𝑡) =
𝑎𝜏

𝜏𝑠 − 𝜏
𝐻(𝑡 − 𝑡𝑖𝑛)(𝑒

−(𝑡−𝑡𝑖𝑛) 𝜏𝑠⁄ − 𝑒−(𝑡−𝑡𝑖𝑛) 𝜏⁄ ) 

 

Regardless of the spike function used, the total synaptic current due to several input synapses is: 

𝐼𝑠𝑦𝑛(𝑡) = 𝐶∑𝑎𝐸𝑘𝑆𝐸𝑘(𝑡)

𝑛𝐸

𝑘=1

+ 𝐶∑𝑎𝐼𝑘𝑆𝐼𝑘(𝑡)

𝑛𝐼

𝑘=1

 

Where 𝑛𝐸 and 𝑛𝐼 are the numbers of excitatory and inhibitory neurons respectively, each with its 

corresponding constant 𝑎 and firing rate 𝑆𝑘(𝑡). 

To implement a rate-based model with delta-function inputs, the following steps can be used: 



1. Decay the membrane potential using 𝑉(𝑡 + ∆𝑡) = 𝑒−∆𝑡 𝜏⁄ 𝑉(𝑡). 

2. Update the time increment 𝑡 = 𝑡 + ∆𝑡. 

3. Add synaptic inputs to 𝑉(𝑡) using 𝑉(𝑡 + ∆𝑡) = 𝑉(𝑡 + ∆𝑡) + 𝐼𝑠𝑦𝑛(𝑡). 

4. Calculate the output using 𝑆𝑖(𝑡 + ∆𝑡) = 𝑔(𝑉(𝑡 + ∆𝑡) − 𝜃). 

5. Determine if the neuron generates a spike at this time, by testing if 𝑆𝑖(𝑡 + ∆𝑡) > rand(1). 

Note that the procedure is slightly different for exponential inputs. 

Lecture 9 

Leaky Integrate-and-Fire Neurons 

Integrate and fire neuron models have two separate stages: a sub-threshold summation of inputs which 

occurs in the same way as in the rate-based model, and then the generation of a stereotyped action 

potential when threshold is reached. When this occurs, the membrane potential is reset. 

 

 

The equation of an integrate-and-fire neuron is given by: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

+
𝑉𝑖
𝑅
= 𝐼𝑖(𝑡)  

𝑆𝑖(𝑡) = {
𝛿(𝑡) if 𝑉𝑖(𝑡) ≥ 𝑉th
0       if 𝑉𝑖(𝑡) < 𝑉th

 



Note that in this model spikes are generated directly from the membrane voltage, rather than indirectly 

through the firing rate function 𝑆(𝑉(𝑡)). 

 

The equation for the membrane potential with constant input is the same as for the leaky integrator 

model: 

𝑉𝑖(𝑡) = 𝐼𝑅[1 − 𝑒
(−𝑡 𝑅𝐶⁄ )] + 𝑉𝑖

0𝑒(−𝑡 𝑅𝐶⁄ ) 

The minimum current needed to trigger an action potential is called the threshold current: 

𝐼th =
𝑉th
𝑅

 

If the initial voltage is zero, then an output spike will be generated at time: 

𝑉th = 𝐼𝑅[1 − 𝑒
(−𝑡 𝑅𝐶⁄ )] 

𝑉th
𝐼𝑅

= 1 − 𝑒(−𝑡 𝑅𝐶⁄ ) 

1 −
𝑉th
𝐼𝑅

= 𝑒(−𝑡 𝑅𝐶⁄ ) 

−
𝑡

𝑅𝐶
= log (1 −

𝑉th
𝐼𝑅
) 

𝑡𝑡ℎ = −𝑅𝐶 log (1 −
𝑉th
𝐼𝑅
) 

If the refractory period is 𝑡𝑟𝑒𝑓, then the continuous firing rate 𝑓 is given by: 

𝑓 =
1

𝑡th + 𝑟ref
=

1

𝑟ref − 𝑅𝐶 log(1 − 𝑉th 𝐼𝑅⁄ )
 



 

Using this equation, we can plot the firing rate as a function of the input 𝐼. As shown in the figure below, 

if 𝐼 is too low, the threshold is not reached an no spikes occur. In the limit of 𝐼 → ∞, the firing rate 

saturates at 𝑓 = 1/𝑟ref.  

Stochastic non-Leaky IF Neurons 

This is a simplified integrate-and-fire model that allows us to introduce how stochastic inputs work. In 

the absence of a leak current the equation is: 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼(𝑡) 

𝑆(𝑡) = {
𝛿(𝑡) if 𝑉(𝑡) ≥ 𝑉th
0       if 𝑉(𝑡) < 𝑉th

  

If the neuron receives excitatory input from a Poisson distributed process 𝑁𝑒(𝑡) with mean rate 𝜇𝑒 and 

synaptic weight 𝑤, then the membrane potential is a random process that shows random jumps: 

𝐼(𝑡) = 𝑎𝑒
𝑑𝑁𝑒
𝑑𝑡

 

Hence, we can solve the membrane potential equation as: 

𝐶
𝑑𝑉

𝑑𝑡
= 𝑎𝑒

𝑑𝑁𝑒
𝑑𝑡

 

𝑉(𝑡) =
𝑎

𝐶
𝑁𝑒(𝑡) 

If 𝑎 𝐶⁄ > 𝑉th, then each synaptic input is sufficient by itself to cause a spike, and so the waiting time 

between spikes is just the same as the waiting time between synaptic inputs. For a Poisson process the 

distribution for the next spike is: 

𝑃(𝑡th ≤ 𝑡) = 1 − 𝑒
−𝜇𝑒𝑡 

If instead 𝑛 inputs are needed to trigger a spike, then we have: 

𝑛 =
𝑉th
𝑎𝑒

 

Now the probability density for getting 𝑛 inputs by time 𝑡 is: 



𝑝𝑛(𝑡) =
𝜇𝑒(𝜇𝑒𝑡)

𝑛−1𝑒−𝜇𝑒𝑡

(𝑛 − 1)! 
 

This is called the 𝑛th-order gamma density. This gives rise to the following properties of the interspike 

interval 𝑡𝑡ℎ: 

• mean(𝑡𝑡ℎ) = 𝑛/𝜇𝑒 

• var(𝑡𝑡ℎ) = 𝑛 𝜇𝑒
2⁄  

• 𝐶𝑉(𝑡𝑡ℎ) = 1/√𝑛 

This means that the distribution becomes more concentrated about the mean as 𝑛 increases. 

Incorporating an absolute refractory period results in a higher mean interspike interval without changing 

the variance, hence the 𝐶𝑉 decreases. Thus, refractory periods reduce the relative variability of spikes. 

We can modify this approach to incorporate both excitatory and inhibitory input: 

𝑉(𝑡) =
𝑎𝑒
𝐶
𝑁𝑒(𝑡) −

𝑎𝑖
𝐶
𝑁𝑖(𝑡) 

The expected value of the voltage of such a process is 𝑎𝑒𝜇𝑒𝑡 − 𝑎𝑖𝜇𝑖𝑡 = 𝜇𝑡. This is called the drift. The 

variance of the membrane voltage is 𝑎𝑒
2𝜇𝑒𝑡 − 𝑎𝑖

2𝜇𝑖𝑡 = 𝜎
2𝑡. This is the variance parameter. Note that 

because there is no current leakage, prior to the production of a spike, voltage mean and variance 

increase linearly with time. 

Now we have the following interspike interval properties: 

• mean(𝑡𝑡ℎ) =
𝑉th

𝜇
=

𝑛𝑎𝑒

𝜇
 

• var(𝑡𝑡ℎ) =
𝑉th𝜎

2

𝜇3
=

𝑛𝑎𝑒𝜎
2

𝜇3
 

• 𝐶𝑉(𝑡𝑡ℎ) = (
1

𝑉th

𝜎2

𝜇
)
1 2⁄

 

Note that if 𝜇𝑖 = 0 so there is no inhibition: 

mean(𝑡𝑡ℎ) =
𝑛𝑎𝑒
𝜇

 

=
𝑛𝑎𝑒
𝑎𝑒𝜇𝑒

 

mean(𝑡𝑡ℎ) =
𝑛

𝜇𝑒
 

var(𝑡𝑡ℎ) =
𝑛𝑎𝑒𝜎

2

𝜇3
 

=
𝑛𝑎𝑒𝑎𝑒

2𝜇𝑒

𝑎𝑒
3𝜇𝑒

3  

var(𝑡𝑡ℎ) =
𝑛

𝜇𝑒
2 

Which are the same as the values given before for the excitatory only case. It is evident that increased 

inhibitory input increases the mean interspike interval, and also increases the jitter (variance). 



Lecture 10 

Stochastic Leaky IF Neurons 

Now we add back the leak current to the stochastic integrate-and-fire model: 

𝐶
𝑑𝑉

𝑑𝑡
+
𝑉

𝑅
= 𝑎𝑒

𝑑𝑁𝑒(𝑡)

𝑑𝑡
− 𝑎𝑖

𝑑𝑁𝑖(𝑡)

𝑑𝑡
 

𝑆(𝑡) = {
𝛿(𝑡) if 𝑉(𝑡) ≥ 𝑉th
0       if 𝑉(𝑡) < 𝑉th

   

This has the solution for the voltage of: 

𝑑𝑉

𝑑𝑡
+
𝑉

𝑅𝐶
=
𝑎𝑒
𝐶

𝑑𝑁𝑒(𝑡)

𝑑𝑡
−
𝑎𝑖
𝐶

𝑑𝑁𝑖(𝑡)

𝑑𝑡
 

Solve using the integrating factor 𝑒∫
1

𝑅𝐶
𝑑𝑡 and assuming 𝑉(0) = 0: 

𝑉′𝑒∫
1
𝑅𝐶
𝑑𝑡 +

1

𝑅𝐶
𝑉𝑒∫

1
𝑅𝐶
𝑑𝑡 =

𝑎𝑒
𝐶

𝑑𝑁𝑒(𝑡)

𝑑𝑡
𝑒∫

1
𝑅𝐶
𝑑𝑡 −

𝑎𝑖
𝐶

𝑑𝑁𝑖(𝑡)

𝑑𝑡
𝑒∫

1
𝑅𝐶
𝑑𝑡 

𝑑

𝑑𝑡
[𝑉𝑒

(
𝑡
𝑅𝐶
)
] =

𝑎𝑒
𝐶

𝑑𝑁𝑒(𝑡)

𝑑𝑡
𝑒
(
𝑡
𝑅𝐶
)
−
𝑎𝑖
𝐶

𝑑𝑁𝑖(𝑡)

𝑑𝑡
𝑒
(
𝑡
𝑅𝐶
)
 

∫
𝑑

𝑑𝑡
[𝑉𝑒

(
𝑡
𝑅𝐶
)
]

𝑡′

0

𝑑𝑡 =
𝑎𝑒
𝐶
∫

𝑑𝑁𝑒(𝑡)

𝑑𝑡
𝑒
(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 −
𝑎𝑖
𝐶
∫

𝑑𝑁𝑖(𝑡)

𝑑𝑡
𝑒
(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 

[𝑉𝑒
(
𝑡
𝑅𝐶
)
]
0

𝑡′

=
𝑎𝑒
𝐶
∫

𝑑𝑁𝑒(𝑡)

𝑑𝑡
𝑒
(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 −
𝑎𝑖
𝐶
∫

𝑑𝑁𝑖(𝑡)

𝑑𝑡
𝑒
(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 

Taking expectations of both sides yields: 

𝐸 [𝑉(𝑡)𝑒
(
𝑡
𝑅𝐶
)
] =

𝑎𝑒
𝐶
∫ 𝐸 [

𝑑𝑁𝑒(𝑡)

𝑑𝑡
] 𝑒

(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 −
𝑎𝑖
𝐶
∫ 𝐸 [

𝑑𝑁𝑖(𝑡)

𝑑𝑡
] 𝑒

(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 

𝐸[𝑉(𝑡)]𝑒
(
𝑡
𝑅𝐶
)
=
𝑎𝑒
𝐶
∫ 𝜇𝑒𝑒

(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 −
𝑎𝑖
𝐶
∫ 𝜇𝑖𝑒

(
𝑡
𝑅𝐶
)

𝑡′

0

𝑑𝑡 

𝐸[𝑉(𝑡)]𝑒
(
𝑡
𝑅𝐶
)
= 𝑅(𝑎𝑒𝜇𝑒 − 𝑎𝑖𝜇𝑖) [𝑒

(
𝑡
𝑅𝐶
)
− 1] 

𝐸[𝑉(𝑡)] = 𝑅(𝑎𝑒𝜇𝑒 − 𝑎𝑖𝜇𝑖)[1 − 𝑒
(−𝑡 𝑅𝐶⁄ )] 

In the limit where 𝑡 → ∞ notice that the expected value tends to 𝑅𝜇, rather than diverging as in the 

non-leaky case. 

Conductance-based Neurons 

In conductance-based models, the input current is now dependent upon the membrane voltage itself, 

thus introducing an additional complexity into the model.  

The membrane voltage at which the postsynaptic current changes between excitatory and inhibitory is 

called the synaptic reversal potential, 𝑉𝐸 for excitatory input and 𝑉𝐼 for inhibitory input. Note that 

𝐼𝑠𝑦𝑛 = 𝑔𝑉𝑠𝑦𝑛. As such we can write the postsynaptic current in terms of the reversal potential and 

membrane voltage as: 

𝐼(𝑡) = 𝑔(𝑡 − 𝑡𝑖𝑛)(𝑉𝐸 − 𝑉(𝑡))  



To take a time-average of the conductance, we will treat it as a constant 𝑔. The equation for the 

membrane voltage is then: 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+
𝑉(𝑡)

𝑅
= 𝑔 (𝑉𝑠𝑦𝑛 − 𝑉(𝑡))  

With the process of spike generation being the same as before: 

𝑆(𝑡) = {
𝛿(𝑡) if 𝑉(𝑡) ≥ 𝑉th
0       if 𝑉(𝑡) < 𝑉th

 

This is solved as follows: 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+
𝑉(𝑡)

𝑅
= 𝑔 (𝑉𝑠𝑦𝑛 − 𝑉(𝑡)) 

𝑉′ +
1

𝑅𝐶
𝑉 +

𝑔

𝐶
𝑉 = 𝑔𝑉𝑠𝑦𝑛 

𝑉′ + (
1 + 𝑅𝑔

𝑅𝐶
)𝑉 =

𝑔

𝐶
𝑉𝑠𝑦𝑛 

Which is the same as the leaky integrator neuron with time constant: 

𝜏𝑐 =
𝑅𝐶

1 + 𝑅𝑔
 

Solve using the integrating factor 𝑒∫
1

𝜏
𝑑𝑡: 

𝑉′𝑒∫
1
𝜏
𝑑𝑡 + (

1

𝜏
)𝑉𝑒∫

1
𝜏
𝑑𝑡 =

𝑔

𝐶
𝑉𝑠𝑦𝑛𝑒

∫
1
𝜏
𝑑𝑡 

𝑑

𝑑𝑡
[𝑉𝑒

(
𝑡
𝜏
)
] =

𝑔

𝐶
𝑉𝑠𝑦𝑛𝑒

(
𝑡
𝜏
)
 

∫
𝑑

𝑑𝑡
[𝑉𝑒

(
𝑡
𝜏
)
]

𝑡′

0

𝑑𝑡 =
𝑔

𝐶
𝑉𝑠𝑦𝑛∫ 𝑒

(
𝑡
𝜏
)

𝑡′

0

𝑑𝑡 

[𝑉𝑒
(
𝑡
𝜏
)
]
0

𝑡′

=
𝑔

𝐶
𝜏𝑉𝑠𝑦𝑛 [𝑒

(
𝑡
𝜏
)
]
0

𝑡′

 

𝑉𝑒
(
𝑡
𝜏
)
− 𝑉𝑖(𝑡 = 0) =

𝑔

𝐶
𝜏𝑉𝑠𝑦𝑛 [𝑒

(
𝑡
𝜏
)
− 1] 

𝑉𝑒
(
𝑡
𝜏
)
=
𝑔

𝐶
𝜏𝑉𝑠𝑦𝑛 [𝑒

(
𝑡
𝜏
)
− 1] + 𝑉0 

𝑉(𝑡) =
𝑔

𝐶
𝜏𝑉𝑠𝑦𝑛[1 − 𝑒

(−𝑡 𝜏⁄ )] + 𝑉0𝑒
(−𝑡 𝜏⁄ ) 

Assuming 𝑉0 = 0, we can compare this to the solution for non-conductance-based spiking models: 

𝑉(𝑡) =
𝜏𝑐
𝐶
𝑔𝑉𝑠𝑦𝑛[1 − 𝑒

(−𝑡 𝜏⁄ )] 

𝑉(𝑡) =
𝜏

𝐶
𝐼[1 − 𝑒(−𝑡 𝜏⁄ )] 

We see that these equations are equivalent (given that 𝑉𝑠𝑦𝑛 = 𝐼/𝑔), apart from the different value of 𝜏. 

For large conductance values, the effective membrane time constant is much smaller than the passive 

membrane time constant of 𝑅𝐶. 



Lecture 11 

Hodgkin-Huxley Neurons 

The Hodgkin-Huxley neuron model is a conductance-based model that incorporates more complex 

changes of 𝑔 over time. The current equation is: 

𝐼𝑚 = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+ 𝐼𝐾 + 𝐼𝑁𝑎 + 𝐼𝐿 

 

Substituting in the expression used in lecture 10 for a synaptic current (in this case one each for K, Na, 

and leak current), we have: 

𝐼𝑚 = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+ 𝐼𝐾 + 𝐼𝑁𝑎 + 𝐼𝐿 

𝐼𝑚 = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+ 𝑔(𝑉, 𝑡)(𝑉 − 𝑉𝐾) + 𝑔(𝑉, 𝑡)(𝑉 − 𝑉𝑁𝑎) + 𝑔𝐿(𝑉 − 𝑉𝐿) 

Note here that the K and Na conductances are voltage and time dependent, while the leakage 

conductance is a constant. Hodgkin and Huxley parameterised the K and Na conductances using the 

following equations: 

𝑔𝐾(𝑉, 𝑡) = 𝐺𝐾𝑛
4 

𝑔𝑁𝑎(𝑉, 𝑡) = 𝐺𝑁𝑎𝑚
3ℎ 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

FitzHugh-Nagumo Neurons 

A simpler way to look at Hodgkin-Huxley-style models is to examine the abstract model developed by 

van der Pol, Bonhoeffer, FitzHugh, Nagumo, Arimoto and Yoshizawa. This involves only two equations: 

𝑑𝑉

𝑑𝑡
= 𝑉 −

𝑉3

3
−𝑊 + 𝐼 

𝑑𝑊

𝑑𝑡
= 𝜙(𝑉 + 𝑎 − 𝑏𝑊) 

Where the parameters are set to 𝑎 = 0.7, 𝑏 = 0.8, and 𝜙 = 0.08. W is an abstract parameter which 

represents the synaptic conductance changing over time. 



This is called a singularly perturbed system, where one variable (V) changes much faster than the other 

variable (W). We can represent the trajectory of the system over time using a phase plane plot. On this 

we can plot the nullclines, the series of points where one derivative is equal to zero: 

0 = 𝑉 −
𝑉3

3
−𝑊 + 𝐼 

0 = 𝜙(𝑉 + 𝑎 − 𝑏𝑊) 

𝑊 = 𝑉 −
𝑉3

3
+ 𝐼 

𝑊 =
1

𝑏
(𝑉 + 𝑎) 

These nullcline equations are shown on the following plot: 

 

If the system is on the 𝑊 nullcline, then the trajectory can only be horizontal since only 𝑉 can change. If 

the system is on the 𝑉 nullcline, then the trajectory can only be vertical since only 𝑊 can change. 

Zero current 

Setting 𝐼 = 0, we can solve for the stationary equilibrium point (intersection of the nullclines) as: 

𝑉 −
𝑉3

3
=
1

𝑏
(𝑉 + 𝑎) 

𝑉 −
𝑉3

3
=
1

𝑏
𝑉 +

𝑎

𝑏
 

𝑉 −
1

𝑏
𝑉 −

𝑉3

3
−
𝑎

𝑏
= 0 

−
1

3
𝑉3 + (1 −

1

𝑏
)𝑉 −

𝑎

𝑏
= 0 

𝑉3 − 3(1 −
1

0.8
)𝑉 + 3

0.7

0.8
= 0 

𝑉3 − 3(−0.25)𝑉 + 2.625 = 0 



𝑉3 + 0.75𝑉 + 2.625 = 0 

This has a real solution of 𝑉 = −1.2. The system will decay to this stable point in a spiral pattern. 

Delta current 

Now instead setting 𝐼(𝑡) = 𝑄𝛿(𝑡), we find that the value of V will jump by a unit 𝑄. For small values of 

𝑄, such as 0.4 or 0.55, V will quickly decrease once again, and after a small cycle the system will return 

to equilibrium. By contrast, for large values of 𝑄, such as 0.56 or 1.2, V will rapidly increase further, 

tracing out a large sweeping path before eventually returning to equilibrium. This corresponds to 

depolarisation triggering an action potential. 

 

Constant current 

With a steady input current, the 𝑉 nullcline is shifted upward, while the 𝑊 nullcline remains the same. 

This changes the position of the equilibrium point. The new equilibrium point is unstable, and the 

system will trace out a large cycle called a stable limit cycle. This corresponds to a regular train of action 

potentials. 

 

A useful rule is that the equilibrium point is unstable whenever the 𝑊 nullcline meets the 𝑉 nullcline 

where the 𝑉 nullcline has a positive slope. In such cases, small deviations from the equilibrium will push 

the system to the stable limit cycle. 

Channel Model Neurons 

These incorporate stochastic ion channel opening and closing as being the cause of the changes in 

conductances. Individual this is probabilistic, but when the numbers of channels are large, behaviour 

becomes predictable. 



Multi-Compartment Neurons 

These are an extension of conductance-based models which involve modelling a neuron as a series of 

connected compartments, each of which has a cable equation that is solved separately, with connected 

boundary conditions. The cable equation is given by: 

𝐶
𝑑𝑇

𝑑𝑡
=

1

2𝑎𝑟𝐿

𝑑

𝑑𝑥
(
𝑎2𝑑𝑉

𝑑𝑥
) − 𝑖𝑠𝑦𝑛 + 𝑖𝑒 

Where 𝑎 is the radius of the cylindrical cable segment, 𝑟𝐿 is the intracellular resistivity, 𝑖𝑠𝑦𝑛 is the 

synaptic current per unit area, and 𝑖𝑒 is the electrode current per unit area. 

Neural Learning 

Lecture 12 

The Synaptic Basis of Learning 

Since neurotransmitter release is probabilistic, synaptic transmission itself is stochastic. Synaptic weight 

is affected by the number of neurotransmitter release sites 𝑛, the probability of release per site 𝑝, and 

the density of receptors 𝑞. The first two are presynaptic variables, while the last is postsynaptic. The 

simplest expression for the average synaptic transmission is simply the product: 

𝑅 = 𝑛𝑝𝑞 

Type Duration Location Occurrence Cause 

Paired-pulse 
facilitation 

100 msec Presynaptic Response to second single 
presynaptic stimulus is greater 
than the first single stimulus. 

Increased presynaptic 
[Ca2+] leads to a 
greater release of 
synaptic vesicles 
(higher p). 

Augmentation 10 sec Presynaptic Repetitive stimulation increases 
the postsynaptic response. 

Increased presynaptic 
[Ca2+] leads to a 
greater release of 
synaptic vesicles 
(higher p). 

Post-tetanic 
potentiation 

1 min Presynaptic Brief, high-frequency stimulus 
increases the postsynaptic 
response. 

Increased presynaptic 
[Ca2+] leads to a 
greater release of 
synaptic vesicles 
(higher p). 

Long-term 
potentiation 

Hours+ Pre- and 
postsynaptic 

Simultaneous presynaptic and 
postsynaptic activity with high 
intracellular [Ca2+] produces 
sustained increase in 
postsynaptic activity. 

Mediated by NMDA 
receptors. 

Long-term 
depression 

Hours+ Pre- and 
postsynaptic 

Simultaneous presynaptic and 
postsynaptic activity with low 
intracellular [Ca2+] produces 
sustained decrease in 
postsynaptic activity. 

May be mediated by 
NMDA receptors 

Spike-timing 
dependent 

Hours+ Pre- and 
postsynaptic 

Upregulation of postsynaptic 
firing rate when presynaptic 

 



plasticity activity precedes postsynaptic 
activity; downregulation in the 
opposite case. 

Activity-
Dependent 
Synaptic 
Scaling 
 

Hours+ Postsynaptic Chronically elevated activity 
leads to reduction in synaptic 
weight. 

Regulation of AMPA 
receptors. 

 

Short-term Synaptic Plasticity 

In short-term synaptic plasticity, changes persist on the order of milliseconds to seconds. All forms of 

short-term plasticity appear to only depend on the presynaptic terminal, and are all thought to relate to 

temporary build-up of calcium ions in the presynaptic cytoplasm. 

Paired-pulse facilitation 

In paired-pulse facilitation, the synaptic response of a single stimulus modifies the response to the next 

stimulus by increasing the probability of neurotransmitter release (i.e., increasing 𝑝). This probably then 

decays back to baseline after a few hundred milliseconds. 

 

This can be modelled using a simple exponential: 

𝑝(𝑡) = 𝑝0 + (𝑝𝑓 − 𝑝0)𝑒
−
𝑡
𝜏𝑓 

where 𝑝0 and 𝑝𝑓 are the probabilities before and after facilitation, respectively, and 𝜏𝑓 is the 

characteristic decay time of facilitation. 

Augmentation 

Augmentation is a form of short-term synaptic plasticity which also increases the probability of releasing 

synaptic vesicles during and after repetitive stimulation. The main difference between paired-pulse 

facilitation and augmentation is that augmentation occurs in response to multiple spikes, whereas 

paired-pulse facilitation is relevant to spikes in response to a single stimulus. 

Augmentation can be modelled using a similar exponential equation: 

𝑝(𝑡) = 𝑝0 + (𝑝𝑎 − 𝑝0)𝑒
−
𝑡
𝜏𝑎 

Post-tetanic potentiation 



Post-tetanic potentiation occurs following a tetanic stimulus, which is a brief high-frequency stimulus. It 

is essentially the same as augmentation, except that it only occurs following a very high frequency 

stimulus, and tends to have a much longer time constant. 

It too is modelled using an exponential equation: 

𝑝(𝑡) = 𝑝0 + (𝑝𝑃𝑇𝑃 − 𝑝0)𝑒
−

𝑡
𝜏𝑃𝑇𝑃 

Paired-pulse depression 

This temporary reduction in the synaptic strength following presynaptic activity is thought to be due to 

the depletion in presynaptic vesicles. 

Long-Term Synaptic Plasticity 

Apart from lasting for much longer, long-term plasticity usually depends on both presynaptic and 

postsynaptic activity. These forms also appear to require protein synthesis. 

Long-term potentiation 

Long-term potentiation (LTP) is a rapid and sustained increase in synaptic strength following a brief but 

potent stimulus. LTP can last for hours, days, weeks or longer. Interest in LTP is in part due to it 

providing a possible model for learning and memory. 

LTP is known to occur following simultaneous presynaptic neurotransmitter release and postsynaptic 

polarisation. It is thought to be mediated by NMDA receptors, which are directly gated by both 

membrane voltage and neurotransmitters, meaning that they pass current only when the membrane is 

depolarised sufficiently to relieve a block by magnesium ions. 

 

Long-term depression 

Long-term depression is induced in a similar way to LTP. Some forms require NMDA receptor activation.  

Whether LTD or LTP is induced depends on a threshold of free intracellular calcium concentration. 

Above the threshold, LTP is induced, whereas below the threshold, LTD is induced. 

Spike-timing dependent plasticity 



This process adjusts the connection strengths based on the relative timing of a particular neuron's 

output and input action potentials. If an input spike to a neuron tends, on average, to occur immediately 

before that neuron's output spike, then that input is made somewhat stronger. If an input spike tends, 

on average, to occur immediately after an output spike, then that input is made somewhat weaker. 

 

Activity-Dependent Synaptic Scaling 

Activity-dependent synaptic scaling (ADSS) is a homeostatic mechanism in which the brain responds to 

chronically elevated activity in a neural circuit with negative feedback, allowing individual neurons to 

reduce their overall action potential firing rate. ADSS is a postsynaptic mechanism and does not seem to 

depend on presynaptic spike activity. Instead, it modifies each synapse by the same multiplicative 

factor, thereby preserving the relative weights. 

Lecture 13 

Hebbian Learning 

Table for forms of Hebbian learning: 

Rule Equation Effects 

Basic Hebb rule 
𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨𝑣𝑢̃⟩ 

Unstable. Projects output vector parallel to 
principal eigenvector of the correlation 
matrix of input. 

Covariance rule 
𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑣 − 𝜃𝑣)𝑢̃⟩ 

Unstable. Projects output vector parallel to 
principal eigenvector of the covariance 
matrix of input. 

Oja’s rule 
𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= ⟨𝑣𝑢̃⟩ − 𝛼𝑣2𝑤̃ 

Stable. Local multiplicative normalisation 
form of basic Hebb rule. 



Subtractive 
normalisation 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= ⟨𝑣𝑢̃⟩ −

𝑣

𝑁𝜇
(𝑛̃ ∙ 𝑢̃)𝑛̃ 

Stable. Non-local subtractive normalisation 
form of basic Hebb rule. 

 

The Hebbian learning rule is a local and cooperate learning rule, meaning that pre- and postsynaptic 

neurons must both be simultaneously active for a synaptic change to occur, and that information for 

synaptic changes is only information locally available to the synapse. Hebb’s rule can be written 

mathematically as: 

∆𝑤𝑖𝑗 = 𝑣𝑖𝑣𝑗 

 

The postsynaptic activity 𝑣 of a single firing-rate neuron is described using the equation: 

𝜏𝑟
𝑑𝑣

𝑑𝜏
= −𝑣 +∑𝑤𝑖𝑢𝑖

𝑁

𝑖=1

 

Here 𝑁 is the number of presynaptic neurons and 𝑤𝑖 is the weight between neuron 𝑖 and the 

postsynaptic neuron. 

To simplify the analysis, we can make the adiabatic assumptions: 

1. The process of synaptic plasticity is much slower than the firing-rate dynamics of the model. 

2. Stimuli are presented slowly enough to allow the network to obtain its steady-state. 

This leads us to set the time derivative to zero, hence yielding the steady-state equation: 

𝑣 = 𝑤̃ ∙ 𝑢̃ 

With this setup, the Hebbian learning rule can be expressed as: 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨𝑣𝑢̃⟩ 

Here 𝜏𝑤 is the time constant that controls the rate of synaptic change. Given this equation, the 

expression 𝑣𝑢̃ may be interpreted as a measure of the probability that the pre- and postsynaptic 

neurons both fire spikes during a short time interval. 

To understand the process, we can take the average over the set of input patterns, and also substitute 

the expression above for the output 𝑣 = 𝑤̃ ∙ 𝑢̃ to find (using this property): 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨𝑣𝑢̃⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑤̃𝑇𝑢̃)𝑢̃⟩ 

https://en.wikipedia.org/wiki/Outer_product#Contrast_with_Euclidean_inner_product


𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨𝑢̃(𝑤̃𝑇𝑢̃)⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨𝑢̃(𝑢̃𝑇𝑤̃)⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨𝑢̃𝑢̃𝑇⟩𝑤̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= 𝑄𝑤̃ 

Here 𝑄 is the input correlation matrix. 

Stability of Hebbian Learning 

To find the derivative of the magnitude of the weights, we differentiate as follows: 

𝜏𝑤
𝑑(𝑤̃ ∙ 𝑤̃)

𝑑𝜏
= 𝜏𝑤

𝑑(𝑤̃)

𝑑𝜏
∙ 𝑤̃ + 𝜏𝑤𝑤̃ ∙

𝑑(𝑤̃)

𝑑𝜏
 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2𝜏𝑤

𝑑(𝑤̃)

𝑑𝜏
∙ 𝑤̃ 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2(𝑣𝑢̃) ∙ 𝑤̃ 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2𝑣(𝑢̃ ∙ 𝑤̃) 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2𝑣2  

Notice that this is always positive, meaning that the magnitude of the weight vector continuously grows. 

To avoid this, we need to impose bounds on the weights. 

Learning Dynamics 

To consider the learning dynamics of the Hebbian learning equation, define the eigenvectors 𝑒𝜇 of 𝑄: 

𝑄𝑒̃𝜇 = 𝜆𝜇𝑒̃𝜇 

Since the eigenvectors form a complete basis for the activity space, any weight vector can be 

represented as a weighted sum of eigenvectors: 

𝑤̃(𝑡) = ∑ 𝑐𝜇(𝑡)𝑒̃𝜇

𝑁

𝜇=1

 

Substituting this into the weight update equation we have: 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= 𝑄𝑤̃ 

𝜏𝑤
𝑑

𝑑𝑡
∑ 𝑐𝜇(𝑡)𝑒̃𝜇

𝑁

𝜇=1

= 𝑄∑𝑐𝜇(𝑡)𝑒̃𝜇

𝑁

𝜇=1

 

𝜏𝑤
𝑑

𝑑𝑡
∑ 𝑐𝜇(𝑡)𝑒̃𝜇

𝑁

𝜇=1

= ∑𝑐𝜇(𝑡)𝑄𝑒̃𝜇

𝑁

𝜇=1

 



𝜏𝑤
𝑑

𝑑𝑡
∑ 𝑐𝜇(𝑡)𝑒̃𝜇

𝑁

𝜇=1

= ∑𝑐𝜇(𝑡)𝜆𝜇𝑒̃𝜇

𝑁

𝜇=1

 

Hence for each eigenvalue 𝜇: 

𝑑

𝑑𝑡
𝑐𝜇(𝑡) =

𝜆𝜇

𝜏𝑤
𝑐𝜇(𝑡) 

𝑐𝜇(𝑡) = 𝑐𝜇(0) exp (
𝜆𝜇

𝜏𝑤
𝑡) 

The weights then become: 

𝑤̃(𝑡) = ∑(𝑤̃(0) ∙ 𝑒̃𝜇) exp (
𝜆𝜇

𝜏𝑤
𝑡) 𝑒̃𝜇

𝑁

𝜇=1

 

The exponential term grows over time because the eigenvalues are all non-negative. For large 𝑡, the 

term with the largest eigenvalue becomes much larger than any of the other terms and dominates the 

sum for 𝑤. The corresponding eigenvector 𝑒̃1 is called the principal eigenvector. As such, after training 

the response to (most) arbitrary input vectors is well-approximated by: 

𝑣 ∝ 𝑒̃1 ∙ 𝑢̃ 

Hence, we can regard Hebbian plasticity as performing a projection of the input vector onto the 

principal eigenvector of the correlation matrix of the inputs used during training.  

 

The trajectories of training are shown in the diagram below. For the initial weight combinations below 

the dotted lines, the weights tend to the corners. Within the dotted lines, it converges to the top corner. 



 

Here the final state does not converge to being parallel with the principal eigenvector, as the weights hit 

the saturation boundary first. 

Oja’s Rule 

Oja’s rule is a modification of the Hebb rule that provides stability and only requires information that is 

local to the modified synapse. However, it is based on theoretical arguments and not experimental data. 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= 𝑣𝑢̃ − 𝛼𝑣2𝑤̃ 

As before, we can consider how the magnitude of the weights change over time: 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 𝜏𝑤

𝑑(𝑤̃)

𝑑𝜏
∙ 𝑤̃ + 𝜏𝑤𝑤̃ ∙

𝑑(𝑤̃)

𝑑𝜏
 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= (𝑣𝑢̃ − 𝛼𝑣2𝑤̃) ∙ 𝑤̃ + 𝑤̃ ∙ (𝑣𝑢̃ − 𝛼𝑣2𝑤̃) 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2(𝑣𝑢̃ − 𝛼𝑣2𝑤̃) ∙ 𝑤̃ 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2(𝑣𝑢̃ ∙ 𝑤̃ − 𝛼𝑣2𝑤̃ ∙ 𝑤̃) 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2(𝑣2 − 𝛼𝑣2|𝑤̃|2) 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2𝑣2(1 − 𝛼|𝑤̃|2) 

We can find the steady state by setting the derivative to zero: 

0 = 2𝑣2(1 − 𝛼|𝑤̃|2) 

0 = 1 − 𝛼|𝑤̃|2 

|𝑤̃|2 =
1

𝛼
 

Hence, we see that weights do not grow without bound. 



Lecture 14 

Multiplicative Normalisation 

Activity Dependent Synaptic Scaling (ADSS) is a mechanism that adjusts the synaptic weights during 

learning to regulate postsynaptic activity. Synaptic scaling involves neurons detecting changes in their 

own firing rates through a set of calcium-dependent sensors that regulate the number of glutamate 

receptors on the cell membrane. Higher levels of activity lead to higher calcium concentrations, leading 

to scaling down of the number of glutamate receptors and hence a reduction in activity. The reverse 

occurs with low levels of activity. 

 

The postsynaptic activity of a cell can be represented by a slowly varying metric 𝑎(𝑡): 

𝜏
𝑑𝑎(𝑡)

𝑑𝑡
= −𝑎(𝑡) +∑𝛿(𝑡 − 𝑡𝑖)

𝑖

 

In multiplicative ADSS, the weights are updated by a common factor 𝛽: 

𝑑𝑤(𝑡)

𝑑𝑡
= 𝛽𝑤(𝑡)[𝑎𝑔𝑜𝑎𝑙 − 𝑎(𝑡)] 

While Hebbian plasticity mechanisms modify neural synaptic connections selectively, synaptic scaling 

normalizes all neural synaptic connections by decreasing the strength of each synapse by the same 

factor (multiplicative change), so that the relative synaptic weighting of each synapse is preserved. Oja’s 

rule is a form of multiplicative normalisation. 



 

Subtractive Normalisation 

Hebbian learning can be made stable by applying subtractive normalisation, where the same amount is 

subtracted from all weights regardless of their magnitude. This is a non-local operation, as it requires 

that the sum of all input activity be available to each individual synapse.  

The modified Hebbian update rule takes the form: 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= 𝑣𝑢̃ −

𝑣

𝑁𝜇
(𝑛̃ ∙ 𝑢̃)𝑛̃ 

Where 𝑛̃ is an 𝑁𝜇-dimensional vector with all components equal to 1. 

Subtractive normalisation must be augmented by a saturation constraint to prevent weights from 

becoming negative. 

Ocular Dominance 

Ocular dominance refers to the phenomenon where neurons in V1 tend to respond primarily to neurons 

from one eye over the other. We can understand ocular dominance as a manifestation of subtractive 

normalisation. 

Consider a single neuron in V1 which receives two inputs from the LGN, one associated with the right 

eye with activity 𝑢𝑅 and the other associated with the left eye with activity 𝑢𝐿. The output of the V1 

neuron is then given by: 

𝑣 = 𝑤𝑅𝑢𝑅 +𝑤𝐿𝑢𝐿 

The input correlation matrix is given by: 

𝑄 = ⟨𝑢̃ ∙ 𝑢̃⟩ 

= [
⟨𝑢𝑅𝑢𝑅⟩ ⟨𝑢𝑅𝑢𝐿⟩

⟨𝑢𝐿𝑢𝑅⟩ ⟨𝑢𝐿𝑢𝐿⟩
] 

𝑄 = [
𝑞𝑆 𝑞𝐷
𝑞𝐷 𝑞𝑆

] 



To solve for the equilibrium behaviour of the network after Hebbian learning, we need to find the 

eigenvalues and eigenvectors of this matrix. 

To find the eigenvalues: 

|
𝑞𝑆 − 𝜆 𝑞𝐷
𝑞𝐷 𝑞𝑆 − 𝜆

| = 0 

0 = (𝑞𝑆 − 𝜆)
2 − 𝑞𝐷

2  

0 = 𝑞𝑆
2 − 2𝑞𝑆𝜆 + 𝜆

2 − 𝑞𝐷
2  

0 = 𝜆2 − 2𝑞𝑆𝜆 + (𝑞𝑆
2 − 𝑞𝐷

2) 

0 = (𝜆 + (𝑞𝑆 + 𝑞𝐷))(𝜆 + (𝑞𝑆 − 𝑞𝐷)) 

𝜆1 = 𝑞𝑆 + 𝑞𝐷 , 𝜆2 = 𝑞𝑆 − 𝑞𝐷 

To find the eigenvectors: 

𝑄𝑒̃1 = 𝜆1𝑒̃1 
(𝑄 − 𝐼𝜆1)𝑒̃1 = 0 

[
−𝑞𝐷 𝑞𝐷
𝑞𝐷 −𝑞𝐷

] [
𝑒1
1

𝑒1
2] = [

0
0
] 

[
−1 1
0 0

] [
𝑒1
1

𝑒1
2] = [

0
0
] 

𝑒1
1 = 𝑒1

2 

∴ 𝑒̃1 =
1

√2
[
1
1
] 

𝑄𝑒̃2 = 𝜆2𝑒̃2 
(𝑄 − 𝐼𝜆2)𝑒̃2 = 0 

[
𝑞𝐷 𝑞𝐷
𝑞𝐷 𝑞𝐷

] [
𝑒2
1

𝑒2
2] = [

0
0
] 

[
1 1
0 0

] [
𝑒2
1

𝑒2
2] = [

0
0
] 

𝑒2
1 = −𝑒2

2 

∴ 𝑒̃2 =
1

√2
[
1
−1
] 

 

Since the input from the two eyes are likely to be correlated, 𝑞𝐷 > 0, and hence 𝜆1 will be the principal 

eigenvector. As we saw before, in the long term this means the weight vector will become parallel to the 

principal eigenvector. The weights then will become: 

𝑤̃(𝑡) = (𝑤̃(0) ∙
1

√2
[
1
1
]) exp (

𝑞𝑆 + 𝑞𝐷
𝜏𝑤

𝑡)
1

√2
[
1
1
] 

𝑤̃(𝑡) = (𝑤̃(0) ∙ 𝑒̃1) exp (
𝑞𝑆 + 𝑞𝐷
𝜏𝑤

𝑡) [
1
1
]  

Hence we see that 𝑤𝑅 = 𝑤𝐿, which does not result in ocular dominance. 

Now instead consider what happens when we use the subtractive normalisation rule: 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= 𝑣𝑢̃ −

𝑣

𝑁𝜇
(𝑛̃ ∙ 𝑢̃)𝑛̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= (𝑤̃𝑇𝑢̃)𝑢̃ −

(𝑤̃𝑇𝑢̃)

2
(𝑛̃𝑇𝑢̃)𝑛̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= 𝑢̃(𝑢̃𝑇𝑤̃) −

1

2
(𝑤̃𝑇𝑢̃)𝑛̃(𝑛̃𝑇𝑢̃) 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= 𝑄𝑤̃ −

1

2
(𝑤̃𝑇𝑢̃)(𝑛̃𝑛̃𝑇)𝑢̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= [

𝑢𝑅𝑢𝑅 𝑢𝑅𝑢𝐿
𝑢𝐿𝑢𝑅 𝑢𝐿𝑢𝐿

] 𝑤̃ −
1

2
(𝑤̃𝑇𝑢̃) [

𝑢𝑅 + 𝑢𝐿
𝑢𝑅 + 𝑢𝐿

] 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= [

𝑢𝑅𝑢𝑅 𝑢𝑅𝑢𝐿
𝑢𝐿𝑢𝑅 𝑢𝐿𝑢𝐿

] 𝑤̃ −
1

2
[
𝑢𝑅
𝑢𝐿
] [𝑢𝑅 + 𝑢𝐿 𝑢𝑅 + 𝑢𝐿]𝑤̃ 



𝜏𝑤
𝑑𝑤̃

𝑑𝑡
= [

𝑢𝑅𝑢𝑅 𝑢𝑅𝑢𝐿
𝑢𝐿𝑢𝑅 𝑢𝐿𝑢𝐿

] 𝑤̃ −
1

2
[
𝑢𝑅𝑢𝑅 + 𝑢𝑅𝑢𝐿 𝑢𝑅𝑢𝑅 + 𝑢𝑅𝑢𝐿
𝑢𝑅𝑢𝐿 + 𝑢𝐿𝑢𝐿 𝑢𝑅𝑢𝐿 + 𝑢𝐿𝑢𝐿

] 𝑤̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
=
1

2
[
𝑢𝑅𝑢𝑅 − 𝑢𝑅𝑢𝐿 𝑢𝑅𝑢𝐿 − 𝑢𝑅𝑢𝑅
𝑢𝐿𝑢𝑅 − 𝑢𝐿𝑢𝐿 𝑢𝐿𝑢𝐿 − 𝑢𝑅𝑢𝐿

] 𝑤̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
=
1

2
[
𝑞𝑆 − 𝑞𝐷 𝑞𝐷 − 𝑞𝑆
𝑞𝐷 − 𝑞𝑆 𝑞𝑆 − 𝑞𝐷

] 𝑤̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝑡
=
1

2
[
𝑎 −𝑎
−𝑎 𝑎

] 𝑤̃ 

To find the eigenvalues of the matrix we use: 

1

2
((
𝑎

2
− 𝜆)

2

− (
𝑎

2
)
2

) = 0 

𝑎2

4
− 𝑎𝜆 + 𝜆2 −

𝑎2

4
= 0 

𝜆2 − 𝑎𝜆 = 0 

𝜆(𝜆 − 𝑎) = 0 

𝜆1 = 𝑎, 𝜆2 = 0 

Now solving for the eigenvectors we have: 

𝑄𝑒̃1 = 𝜆1𝑒̃1 

(𝑄 − 𝐼𝜆1)𝑒̃1 = 0 

[

𝑎

2
− 𝑎 −

𝑎

2

−
𝑎

2

𝑎

2
− 𝑎

] [
𝑒1
1

𝑒1
2] = [

0
0
] 

[
−
𝑎

2
−
𝑎

2

−
𝑎

2
−
𝑎

2

] [
𝑒1
1

𝑒1
2] = [

0
0
] 

[
1 1
0 0

] [
𝑒1
1

𝑒1
2] = [

0
0
] 

𝑒1
1 = −𝑒1

2 

∴ 𝑒̃1 =
1

√2
[
1
−1
] 

Substituting this into the equation for the weights we find: 

𝑤̃(𝑡) = (𝑤̃(0) ∙ 𝑒̃1) exp (
𝑞𝑆 − 𝑞𝐷
𝜏𝑤

𝑡) [
1
−1
]  

Note that now the opposite eigenvector to before is growing and becomes dominant. The direction of 

growth will depend on the initial condition of the weights. If 𝑤̃(0) ∙ 𝑒̃1is positive, 𝑤𝑅 increases and 𝑤𝐿 

decreases, while if it is negative, then 𝑤𝐿 increases and 𝑤𝑅 decreases. Either way, one weight will grow 

while the other will approach zero, thereby achieving ocular dominance. 

The Covariance Rule 

Experimental results indicate that when cells are exposed to high rates of activity sufficient to generate 

postsynaptic activity, the synaptic weight is increased. Conversely, when cells are exposed to low rates 



of activity that is nonetheless sufficient to generate postsynaptic activity, the synaptic weight is 

decreased. These effects are shown in the diagram below. 

 

We can model these effects using a modification of the standard Hebbian learning rule. The standard 

rule has the form: 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= 𝑣𝑢̃ 

There are two possible modifications: 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= (𝑣 − 𝜃𝑣)𝑢̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= 𝑣(𝑢̃ − 𝜃𝑢) 

Both involve introduction of a threshold parameter that determines the level of presynaptic or 

postsynaptic activity at which LTD becomes LTP. The threshold is usually set to the average presynaptic 

or postsynaptic activity over the training data. 

Substituting the average presynaptic activity into the parameter of the first rule, we have: 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑣 − 𝜃𝑣)𝑢̃⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑢̃ ∙ 𝑤̃ − ⟨𝑢̃ ∙ 𝑤̃⟩)𝑢̃⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑢̃ − ⟨𝑢̃⟩) ∙ 𝑤̃𝑢̃⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑢̃ − ⟨𝑢̃⟩)𝑤̃𝑇𝑢̃⟩ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑢̃ − ⟨𝑢̃⟩)𝑢̃𝑇⟩𝑤̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= (⟨𝑢̃𝑢̃𝑇⟩ − ⟨𝑢̃⟩2)𝑤̃ 

𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= ⟨(𝑢̃ − ⟨𝑢̃⟩)(𝑢̃ − ⟨𝑢̃⟩)𝑇⟩𝑤̃ 



𝜏𝑤
𝑑𝑤̃

𝑑𝜏
= 𝐶𝑤̃ 

 

Where C is the input correlation matrix. Thus, covariance learning produces weight vectors which are 

parallel to the principal eigenvector of the covariance matrix, instead of the correlation matrix as for the 

standard Hebbian learning. This is shown in the diagram below. 

 

Note that the covariance learning rule is still unstable, as the weight magnitude changes as: 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 𝜏𝑤

𝑑(𝑤̃)

𝑑𝜏
∙ 𝑤̃ + 𝜏𝑤𝑤̃ ∙

𝑑(𝑤̃)

𝑑𝜏
 

= (𝑣 − ⟨𝑣⟩)𝑢̃ ∙ 𝑤̃ + 𝑤̃ ∙ (𝑣 − ⟨𝑣⟩)𝑢̃ 

= (𝑣 − ⟨𝑣⟩)𝑢̃ ∙ 𝑤̃ + (𝑣 − ⟨𝑣⟩)𝑢̃ ∙ 𝑤̃ 

= 2(𝑣 − ⟨𝑣⟩)𝑣 

𝜏𝑤
𝑑|𝑤̃|2

𝑑𝜏
= 2𝑣(𝑣 − ⟨𝑣⟩) 

 

We see that the magnitude of weights increases so long as activities are non-zero. 

Lecture 15 

Spike-Timing Dependent Plasticity 

In Hebbian learning, a synapse is strengthened if pre- and postsynaptic neurons are simultaneously 

active. However when we consider spiking models, we need to consider the relative timing of spikes in 

addition to the overall rate. This leads to the idea of Spike-Timing Dependent Plasticity (STDP), in which 

the timing of the presynaptic relative to the postsynaptic spike determines the change in synaptic 

weight. Experimental data for this effect is shown below. 



  

STDP Learning Rule 

The most general equation for the weight changes up to the quadratic level is: 

∆𝑤𝑖𝑗 = 𝑐𝑖𝑗𝑣𝑖𝑣𝑗 + 𝑐𝑖𝑖𝑣𝑖
2 + 𝑐𝑗𝑗𝑣𝑗

2 + 𝑏𝑖𝑣𝑖 + 𝑏𝑗𝑣𝑗 + 𝑎 

Where 𝑣𝑖 is the presynaptic activity rate, 𝑣𝑗 is the postsynaptic activity rate, and 𝑐, 𝑏, 𝑎 are constants. 

The change in weight after an experiment of duration 𝑇 is then given by: 

∆𝑤𝑖𝑗 = ∫ ∫ 𝑐𝑖𝑗𝑆𝑖(𝑡)𝑆𝑗(𝑡
′)

𝑇

0

𝑑𝑡
𝑇

0

𝑑𝑡′ +∫ 𝑏𝑖𝑆𝑖(𝑡)
𝑇

0

𝑑𝑡 + ∫ 𝑏𝑗𝑆𝑗(𝑡
′)

𝑇

0

𝑑𝑡′ +∫ 𝑎
𝑇

0

𝑑𝑡 

In setting a value for 𝑐𝑖𝑗, we assume that a change in synaptic weights only occurs if both spikes occur 

within some time interval: 

|𝑡𝑖 − 𝑡𝑗| < 𝑠 

We then define a window function 𝑐𝑖𝑗 = 𝑊(𝑠) that determines how the synaptic weight changes as a 

function of 𝑠. The shape of 𝑊 defines how the synaptic change depends on the time difference. 

Substituting in this function for 𝑐𝑖𝑗  and dividing through by 𝑇 we have: 

∆𝑤𝑖𝑗

𝑇
=
1

𝑇
∫ ∫ 𝑊(𝑡 − 𝑡′)𝑆𝑖(𝑡)𝑆𝑗(𝑡

′)
𝑇

0

𝑑𝑡
𝑇

0

𝑑𝑡′ +
𝑏𝑖
𝑇
∫ 𝑆𝑖(𝑡)
𝑇

0

𝑑𝑡 +
𝑏𝑗

𝑇
∫ 𝑆𝑗(𝑡

′)
𝑇

0

𝑑𝑡′ + 𝑎 

∆𝑤𝑖𝑗

𝑇
=
1

𝑇
∫ ∫ 𝑊(𝑠)𝑆𝑖(𝑠 + 𝑡

′)𝑆𝑗(𝑡
′)

𝑇−𝑡′

−𝑡′
𝑑𝑠

𝑇

0

𝑑𝑡′ +
𝑏𝑖
𝑇
∫ 𝑆𝑖(𝑡)
𝑇

0

𝑑𝑡 +
𝑏𝑗

𝑇
∫ 𝑆𝑗(𝑡

′)
𝑇

0

𝑑𝑡′ + 𝑎  

1

𝑇
∫

𝑑𝑤𝑖𝑗(𝑡)

𝑑𝑡

𝑇

0

𝑑𝑡 =
1

𝑇
∫ ∫ 𝑊(𝑠)𝑆𝑖(𝑡 + 𝑠)𝑆𝑗(𝑡)

𝑇−𝑡

−𝑡

𝑑𝑠
𝑇

0

𝑑𝑡 +
𝑏𝑖
𝑇
∫ 𝑆𝑖(𝑡)
𝑇

0

𝑑𝑡 +
𝑏𝑗

𝑇
∫ 𝑆𝑗(𝑡)
𝑇

0

𝑑𝑡 + 𝑎  

If 𝑇 ≫ 𝑠, we can replace the upper integral terminal with 𝑇. Then extending the integral out to infinity 

and negative infinity, which is valid since far outside the window (in the negative direction in particular) 

no weight changes will occur anyway, we can write: 



1

𝑇
∫

𝑑𝑤𝑖𝑗(𝑡)

𝑑𝑡

𝑇

0

𝑑𝑡 =
1

𝑇
∫ ∫ 𝑊(𝑠)𝑆𝑖(𝑡 + 𝑠)𝑆𝑗(𝑡)

𝑇−𝑡′

𝑡′
𝑑𝑠

∞

−∞

𝑑𝑡 +
𝑏𝑖
𝑇
∫ 𝑆𝑖(𝑡)
𝑇

0

𝑑𝑡 +
𝑏𝑗

𝑇
∫ 𝑆𝑗(𝑡)
𝑇

0

𝑑𝑡 + 𝑎 

⟨
𝑑

𝑑𝑡
𝑤𝑖𝑗(𝑡)⟩ = ∫ 𝑊(𝑠)⟨𝑆𝑖(𝑡 + 𝑠)𝑆𝑗(𝑡)⟩

∞

−∞

𝑑𝑠 + 𝑏𝑖⟨𝑆𝑖(𝑡)⟩ + 𝑏𝑗⟨𝑆𝑗(𝑡)⟩ + 𝑎 

We see that learning is driven now by temporal correlations in the spiking times of the presynaptic and 

postsynaptic neurons. 

Sound Localisation 

Barn owls can use interaural time differences (ITDs) for sound source localisation to locate prey even in 

complete darkness. By this method, they can localise sound to within 1-2 degrees, which corresponds to 

temporal arrival differences between the ears of less then 5𝜇𝑠. This capability is not innate, but learned 

by connections being strengthened and pruned during development. 

  

At each ear, sounds are separated into their frequency components through phase locking. This is 

facilitated by unusually low membrane time constants of the neurons involved, around 𝜏 = 0.1𝑚𝑠 

compared to more typical values of 𝜏 = 10𝑚𝑠. Signals are then passed through the nucleus 

magnocellularis (NM) to the nuclear laminaris (NL), where interaural time differences are computed, 

which for a simple sinusoidal signal will be equal to the phase difference.  

 



A neural model of this process has been developed by Gerstner et al, based on an integrate-and-fire 

neuron with exponential current input as a function of input spikes from 𝑗 input neurons, which in turn 

are generated from a Poisson process with sinusoidal firing rate. The resulting input can be 

approximated by a sum of Gaussians. The model then consists of the following equations: 

𝜏𝑚
𝑑𝑢

𝑑𝑡
= −𝑢 + 𝑅𝐼(𝑡) 

𝐼(𝑡) =∑
𝑤𝑗

𝑅 𝜏𝑚⁄
𝑗

 ∑
1

𝜏𝑠
exp (−

𝑡 − 𝑡𝑗

𝜏𝑠
)𝐻(𝑡 − 𝑡𝑗)

𝑡𝑗

 

𝑡𝑗 ~ 𝑃𝑜(sin(𝜎𝑡)) 

This model adjusted weights using STDP, and was able to learn synaptic weights that are sensitive to the 

periodic structure of the input. This is shown below, with the weights plotted against the interaural time 

difference before (top), during (middle), and after learning (bottom).The dashes lines on the right show 

that after learning, the neurons have the highest response rate when the time difference is zero, and 

lowest when it is equal to have a period. Thus they serve as a coincidence detector. 

 

Additive vs Multiplicative STDP 

STDP is competitive, since changing the strength of one synapse will shift spike timing of the 

corresponding neuron, which would then affect the synaptic strengths of the other synapses. Additive 

STDP tends to result in a bimodal distribution of synaptic weights, with weights driven to the extremes. 

 



In Additive STDP, correlated groups of synapses tend to drive the output, and therefore tend to 

potentiate one another in comparison to uncorrelated groups of synapses. An alternative model is 

multiplicative STDP. The difference between additive and multiplicative STDP are shown in the 

equations below: 

∆𝑤+ = 𝑐 exp(−𝛿𝑡 𝜏⁄ ) 

∆𝑤× = 𝑐𝑤 exp(−𝛿𝑡 𝜏⁄ ) 

The multiplicative term results in a balancing of synapses, so that strong synapses are weakened, and 

weak synapses are strengthened. Because of this effect, neurons trained using multiplicative STDP tend 

to form a unimodal weight distribution. 

 

This form of learning produces weight distributions like those observed experimentally. It is also stable 

without a need to set a maximum weight value. Competition can be reintroduced using a mechanism 

such as activity-dependent synaptic scaling. 
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Calcium Model of STDP 

Biophysical models focus on the underlying mechanisms involved in producing an observed 

phenomenon. They are distinct from phenomenological models (e.g., STDP), which simply try to 

describe the observed phenomenon. Most of these are based on the role of calcium. 



In this model, there is a spike in calcium whenever there is a presynaptic or postsynaptic action 

potential, but the spike is larger in the case of a postsynaptic action potential. In either case, the calcium 

concentration then decays exponentially. What matters in this model is the proportion of time that the 

cell is above the calcium threshold for potentiation (𝛼𝑝, threshold shown in dotted orange), compared 

to the proportion of the time it is above the calcium threshold for depression (𝛼𝑑, threshold shown in 

dotted green). As shown in the bottom graph, 𝛼𝑑 is relatively higher when the postsynaptic spike occurs 

before the presynaptic spike (because the large first spike bumps up the second to be in the depression 

range), while 𝛼𝑝 is relatively higher in the reverse case (because the small first spike does nothing 

except raise up the second spike so it spends longer above the potentiation threshold). This leads to 

depression when the postsynaptic spike occurs first, and potentiation when the postsynaptic spike 

occurs second. Note that there is a delay 𝐷 between a presynaptic spike and the onset of the 

corresponding calcium spike, but no such delay in the case of a postynaptic spike. 

 

The calcium dynamics 𝑐(𝑡) are given by the equation: 

𝑑𝑐

𝑑𝑡
= −

𝑐

𝜏
+ 𝐶𝑝𝑟𝑒∑𝛿(𝑡 − 𝑡𝑖 − 𝐷)

𝑖

+ 𝐶𝑝𝑜𝑠𝑡∑𝛿(𝑡 − 𝑡𝑗)

𝑗

 

There 𝑡𝑖 are times of presynaptic spikes and 𝑡𝑗 are times of postsynaptic spikes. This calcium behaviour 

gives rise to the values 𝛼𝑝 and 𝛼𝑑, which are the fractions of time the calcium transient is above the 

potentiating and depressing thresholds 𝜃𝑥, calculated over total stimulation time 𝑇 as: 

𝛼𝑥 =
1

𝑇
∫ 𝐻(𝑐(𝑡) − 𝜃𝑥)
𝑇

0

𝑑𝑡 

The behaviour of the synaptic efficiency 𝜌 is then modelled by the equation: 

𝜏
𝑑𝜌(𝑡)

𝑑𝑡
= 𝛼𝑝𝛾𝑝(1 − 𝜌(𝑡)) − 𝛼𝑑𝛾𝑑𝜌(𝑡) + √𝜏√𝛼𝑝 + 𝛼𝑑𝑧(𝑡) 

Where 𝑧(𝑡) is a Gaussian noise term with standard deviation 𝜎 and zero mean. 



To find the long-term equilibrium for a given set of spikes 𝜌̅, we ignore the noise term and set the 

derivative to zero: 

𝛼𝑝𝛾𝑝(1 − 𝜌̅) = 𝛼𝑑𝛾𝑑𝜌̅ 

𝛼𝑝𝛾𝑝 − 𝛼𝑝𝛾𝑝𝜌̅ = 𝛼𝑑𝛾𝑑𝜌̅ 

𝛼𝑝𝛾𝑝 = 𝛼𝑑𝛾𝑑𝜌̅ + 𝛼𝑝𝛾𝑝𝜌̅ 

𝛼𝑝𝛾𝑝 = 𝜌̅(𝛼𝑑𝛾𝑑 + 𝛼𝑝𝛾𝑝) 

𝜌̅ =
𝛼𝑝𝛾𝑝

𝛼𝑑𝛾𝑑 + 𝛼𝑝𝛾𝑝
 

The effect of varying the 𝛼 parameters is shown in the figure below (note that 𝜌̅ is on a different scale to 

the axis on the left). 

 

Note that STDP is still a simplification, as it does not incorporate effects such as: 

1. Fire rate dependence 

2. Spike-triplets and spike-quadruplets 

3. Bursts 

4. Dendritic location dependence 

Unsupervised Learning 

Unsupervised learning is a type of Hebbian learning that finds previously unknown patterns in a data set 

(without requiring pre-existing labels). It usually performs principal component analysis (or similar) 

through an algorithm that involves variance maximisation. 

Supervised Learning 

Supervised learning involves presenting labelled data to a network, which then learns weights in 

accordance with a mechanism that optimises some predefined error function. Effectively this involves 

learning to approximate some function 𝑔 of the input 𝑥̃ with a parameterised approximation function 

𝐺(𝑤̃, 𝑥̃). The approximation algorithm then attempts to find the optimal weights 𝑤̃∗ that reduce the 

error until it is below some threshold 𝜖, relative to some norm |∙|. This is represented as: 



|𝐺(𝑤̃∗, 𝑥̃) − 𝑔(𝑥̃)| ≤ 𝜖 

In neural network applications, the following parameterisations are often made: 

• The approximation function 𝐺 is often sigmoidal. 

• The norm |∙| is often Euclidean. 

• The search algorithm for 𝑤̃∗ is typically some form of gradient descent. 

For supervised learning, the approximation function needs to provide for universality, the ability of 

𝐺(𝑤̃, 𝑥̃) to represent 𝑔(𝑥) accurately; and generalisation, the ability of 𝐺(𝑤̃, 𝑥̃) to correctly map new 

points not seen during the learning process. 

Reinforcement Learning 

Reinforcement learning involves interacting with an environment to receive a learning signal, which 

then drives learning. Not only animal behaviours can be reinforced, but even individual neurons can be 

reinforced to yield increased firing rates (see example experimental data below). 

 

Reward-Modulated STDP 

Spike time dependent plasticity in its ordinary form is an unsupervised form of learning, as synaptic 

changes are not based on any teaching or reward signal. As such, it would have to be modified to be 

used for reinforcement learning. To achieve this we need a way of solving the ‘credit assignment 

problem’, which is how to preserve a memory of the stimulus so that by the time a reward signal is 

received, the change in network weights can be conditioned on the stimulus.  

One solution is to use a mechanism called eligibility traces. In this mechanism, the eligibility function 

integrates signals from the presynaptic and postsynaptic spikes, and then computes the changes in 

weights by multiplying the eligibility trace by the reward signal: 

∆𝑤 = 𝑒 × 𝑦 



 

This mechanism can even generate anti-Hebbian learning when the reward signal is negative. 

 

Reward signals are often carried by dopamine (DA), which functions as both a neurotransmitter and also 

a neuromodulator. Neurons of the ventral tegmental area (VTA) and substantia nigra respond to 

rewarding stimuli, projecting dopamine to many other brain regions. As shown below, this can positively 

modulate the extent of STDP. 

 



We can explain the flip in the sign of the STD depression shown in the diagram above (in the presence of 

dopamine (DA)) if we introduce two separate eligibility traces, one for depression and one for 

potentiation. 

 

Brain Systems  
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Acoustics 

 

Ear Anatomy 

The ear is comprised of an outer, middle, and inner ear. The outer ear consists of the pinna, auditory 

canal, and tympanic membrane, which separates outer and middle ear. The middle ear consists of three 

small bones (called the malleus (hammer), incus (anvil) and stapes (stirrup)), which transmit vibrations 

from the tympanic membrane to the oval window (also called the ear drum). The inner ear consists of 

fluid filled chambers including semicircular canals (equilibrium) and cochlea (hearing). Within the 

cochlea is the organ of corti, which is responsible for the sound transduction process. 



 

 

Higher frequency sounds are detected near the beast of the basilar membrane, while low frequency 

sounds are detected near its apex. This is a form of spatial coding. 



 

This tonotopic mapping is maintained throughout the auditory pathways. 

 

Hair Cells 

Hair cells are embedded in the basilar membrane and project small cilia into the overlying tectorial 

membrane. When sound vibrates the perilymph in the scala vestbuli and scala tympani, the basilar 

membrane vibrates relative to the tectorial membrane. This causes the cilia of the hair cells to move 

relative to each other, opening mechanically gated ion channels. This depolarises the membrane, which 

then triggers the opening of voltage or calcium gated channels, further depolarising the membrane. If 

threshold is reached, neurotransmitter is released, triggering action potentials in efferent neurons.  



 

 

At lower frequencies, the response of hair cells is phase locked to the input stimulus. This becomes 

impossible at high frequencies owing to the membrane time constant. 

 



  

Eye Anatomy 

Vertebrate eyes consist of: the sclera, tough white outer connective tissue; the cornea, a clear part of 

sclera in the front of the eye which allows the light in and acts as a fixed lens; the iris, a pigmented inner 

layer that can change size to regulate the amount of light coming in; the lens itself; the retina, where the 

photoreceptors are located at the back of the eye; aqueous humour, a fluid that fills the anterior cavity; 

and vitreous humour, a jellylike fluid that fills the posterior chamber. 

 

Photoreceptors 

The photoreceptors lining the retina consist of rods and cones. Each has stacks of membrane discs 

containing rhodopsin (a vitamin A derivative + opsin). These are activated and cause sensory 

transduction in response to incident photons. 



 

 

Cell type Location Description 

Centre-surround cells RGC and LGN Concentric circles where the stimulus is excitatory 
and inhibitory respectively. 

Simple cells V1 Responds primarily to oriented edges and gratings 
(bars of particular orientations), in a particular 
location in visual field. 

Complex cells V1/V2 Responds primarily to oriented edges and gratings, 
regardless of exact location in visual field. Some 
respond optimally only to movement in a certain 
direction. 

Hyper-complex cells V2/V+ Responds to oriented edges and gratings regardless 
of exact location, but also sensitive to the length of 
the lines. This is called edge-stopping. 

 



The visual system consists of two main pathways: ventral (‘what’) and dorsal (‘where’). 
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Introduction to EEG 

Electroencephalography (EEG) measures the time evolution of the electric potential (voltage) generated 

by the brain. EEG can be measured on the scape, on the surface of the cortex, or in deeper parts of the 

brain. The electrode size must vary in accordance with the location of the electrodes. 

 

There are many layers of insulation between the electrodes and the neural tissue. 



 

A number of different waveform patterns have been identified in EEG: 

• Delta: less than 3 Hz. Dominant rhythm in infants and in stages 3 and 4 of sleep. 

• Theta: 3.5 – 7.5 Hz. Slow activity. 

• Alpha: 7.5 – 13 Hz. Appears when closing the eyes and relaxing. 

• Beta: 14 – 20 Hz. Fast activity. Dominant rhythm when eyes are open. 

• Gamma: 20-100 Hz. Faster activity. 

 

 

Several sources of noise make interpretation of EEG difficult. These include eye blinking, chewing, and 

movement of the electrical leads. 



 

Modelling the Electric Potential 

In biology, current is transmitted by ions rather than electrons. Most of these currents flow within the 

dendrites or axon of the cell as in action potential transmission, however since cell membranes are 

highly resistive, intracellular currents do not contribute to the EEG. Instead, brain electric fields are 

generated by chemical currents of charged ions flowing outside the cell. 

 

The electric field generated by a particle of charge 𝑞 at location 𝑟𝑠 is: 

𝐸(𝑟) =
𝑞

4𝜋𝜖0|𝑟 − 𝑟𝑠|
𝑟̃ 

The electric potential of a single charge is: 

𝜙(𝑟) =
𝑞

4𝜋𝜖0𝑅
 

The electric potential generated by 𝑁 charges is: 

𝜙(𝑟) = ∑𝜙𝑁(𝑟)

𝑁

𝑛=1

=
1

4𝜋𝜖0
∑

𝑞𝑛
𝑅𝑁

𝑁

𝑛=1

 

If there are only two charges, this equation simplifies to that of a dipole: 

𝜙(𝑟) =
𝑞

4𝜋𝜖0

𝑑 cos(𝜃)

𝑅2
 



 

Because the measurement of EEG is far from the sources, a volume containing many charges can be 

approximated by a single dipole, provided there is roughly an equal number of positive and negative 

ions within it. This is known as an equivalent dipole and is useful in approximating the activity in small 

volumes of the brain. However, for equivalent electric dipoles we still need to know a rough distribution 

of all charges in the brain, so instead we use a current dipole, with current sources and sinks instead of 

positive and negative charges. The equation for a current dipole is: 

𝜙(𝑑, 𝜃) ≈
𝐼𝑑

4𝜋𝜎

cos(𝜃)

𝑅2
 

The net electrical potential at 𝑟 generated by many small volumes is then approximated by the sume of 

the equivalent dipole representing each small volume: 

𝜙𝑇𝑂𝑇(𝑟) =∑
𝐼𝑑𝑖
4𝜋𝜎

cos(𝜃𝑖)

𝑅2
𝑖

𝐺(𝑑𝑖 , 𝜃𝑖, 𝑟) 

Here 𝐺(𝑑𝑖, 𝜃𝑖, 𝑟) or 𝐺(𝑟𝑠, 𝑟𝑅) is the Green’s function, and describes the effects of the material between 

the source 𝑟𝑠 and the recording location 𝑟𝑅. 

Interpreting EEG Signals 

Because the human head is not spherical and is inhomogeneous, the true Green’s function is very 

complex, and must take into account both the different materials in the brain, but also the boundaries 

between them.  

To deal with this complexity approximations are needed. In the brain, the neurons in the cortex are 

aligned and often large areas are activated together, meaning that potentials in the cortex are much 

more influential to the EEG than those in deeper structures. Hence, an appropriate simplification is to 

consider a sheet of dipoles rather than a volume. 

 



Using this model, simulations show that the measured voltages are affected by large areas of cortex. 

EEG is thus an ambiguous measurement, in that the same EEG signal can be generated by many 

different patterns or regions of brain activity. 
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Neural Mass Models 

Neural mass models describe macro-columns using only one or two state variables to represent the 

mean activity of the whole population of neurons. This procedure, sometimes referred to as a mean-

field approximation, is very efficient for determining the steady-state behaviour of neuronal systems. It 

is often used to model alpha rhythms. 

Mass models consist of two main components: a neural output function 𝑓(𝑣), which describes the firing 

rate of a neuron as a function of its membrane potential 𝑣; and a synaptic kernel ℎ(𝑡), which describes 

the membrane potential as a function of time after threshold 𝑣0 has been reached. 

 

Working backwards, the output firing rate of cell two 𝑔2(𝑡) is determined by the sigmoid output 

function 𝑓(𝑣): 

𝑔2(𝑡) = 𝑓(𝑣2(𝑡)) 

The postsynaptic potential of cell two, 𝑣2(𝑡), is in turn determined by convolving the synaptic kernel cell 

ℎ(𝑡) with the firing rate of neuron one 𝑔1(𝑡): 

𝑣2(𝑡) = ℎ(𝑡) ∗ 𝑔1(𝑡) = ∫ ℎ(𝑡 − 𝑡′)𝑔1(𝑡
′)

𝑡

−∞

𝑑𝑡′ 



Many different synaptic kernel functions can be used: 

ℎ(𝑡) = 𝐻(𝑡)𝑊 exp (−
𝑡

𝜏
) 

ℎ(𝑡) = 𝐻(𝑡)𝑊
𝑡

𝜏
exp (−

𝑡

𝜏
) 

ℎ(𝑡) = 𝐻(𝑡)
𝑊

𝜏2 − 𝜏1
[exp (−

𝑡

𝜏1
) − exp (−

𝑡

𝜏2
)] 

A common form for the firing rate function is: 

𝑓(𝑣𝑖(𝑡)) =
𝑓𝑚𝑎𝑥

1 + exp (𝑎(𝑣0 − 𝑣(𝑡)))
 

Green’s Function Methods 

These equations can be combined into a single differential equation by taking advantage of the 

properties of Green’s functions. Suppose we have a linear differential operator 𝐷 and an equation of the 

form: 

𝐷𝑣(𝑥) = 𝑓(𝑥) 

A Green’s function of 𝐷 is a function 𝐺(𝑥, 𝑥′) such that: 

𝐷𝐺(𝑥, 𝑥′) = 𝛿(𝑥′ − 𝑥) 

In words, 𝐺(𝑥, 𝑥′) describes the impulse response of the differential operator 𝐷. It turns out that 

function 𝐺(𝑥, 𝑥′) for 𝐷 is all we need to solve the original equation. To see this, multiply by 𝑓(𝑥′) and 

then integrate both sides: 

∫𝐷𝐺(𝑥, 𝑥′)𝑓(𝑥′) 𝑑𝑥′ = ∫𝛿(𝑥′ − 𝑥)𝑓(𝑥′) 𝑑𝑥′ 

𝐷∫𝐺(𝑥, 𝑥′)𝑓(𝑥′) 𝑑𝑥′ = 𝑓(𝑥) 

Where the second lines follows because 𝐷 is linear and operates only on 𝑥, not 𝑥′. Now all we need to 

do is observe that: 

𝑣(𝑥) = ∫𝐺(𝑥, 𝑥′)𝑓(𝑥′) 𝑑𝑥′ 

And we have a solution to the original equation: 

𝐷𝑣(𝑥) = 𝑓(𝑥) 

In the case of the neural mass model, we have the following equation: 

𝑣(𝑡) = ∫ 𝐻(𝑡)𝐴𝑡 exp (−
𝑡

𝜏
) 𝑔(𝑡′)

𝑡

−∞

𝑑𝑡′ 

It turns out that we can rewrite this as a differential equation as follows. First, take derivatives of ℎ(𝑡). 



ℎ(𝑡) = 𝐻(𝑡)𝐴𝑡 exp (−
𝑡

𝜏
) 

ℎ′(𝑡) = 𝐻(𝑡)𝐴 exp (−
𝑡

𝜏
) −

1

𝜏
ℎ(𝑡) 

ℎ′′(𝑡) = 𝐴𝛿(𝑡) −
1

𝜏
𝐻(𝑡)𝐴 exp (−

𝑡

𝜏
) −

1

𝜏
𝐻(𝑡)𝐴 exp (−

𝑡

𝜏
) +

1

𝜏2
ℎ(𝑡) 

= 𝐴𝛿(𝑡) −
2

𝜏
𝐻(𝑡)𝐴 exp (−

𝑡

𝜏
) +

1

𝜏2
ℎ(𝑡) 

Now consider the linear differential operator 𝐷 =
𝑑2

𝑑𝑡2
+
2

𝜏

𝑑

𝑑𝑡
+

1

𝜏2
: 

𝐷ℎ(𝑡) = (𝐴𝛿(𝑡) −
2

𝜏
𝐻(𝑡)𝐴 exp (−

𝑡

𝜏
) +

1

𝜏2
ℎ(𝑡)) +

2

𝜏
(𝐻(𝑡)𝐴 exp (−

𝑡

𝜏
) −

1

𝜏
ℎ(𝑡)) + (

1

𝜏2
) 

= 𝐴𝛿(𝑡) +
1

𝜏2
ℎ(𝑡) −

2

𝜏2
ℎ(𝑡) +

1

𝜏2
 

𝐷ℎ(𝑡) = 𝐴𝛿(𝑡) 

Hence we have established that ℎ(𝑡) is a Green’s function of 𝐷. Now let us apply the same process as 

above to find the full equation: 

𝐷𝐺(𝑥, 𝑥′) = 𝛿(𝑥′ − 𝑥) 

∫𝐷𝐺(𝑥, 𝑥′)𝑓(𝑥′) 𝑑𝑥′ = ∫𝛿(𝑥′ − 𝑥)𝑓(𝑥′) 𝑑𝑥′ 

𝐷∫𝐺(𝑥, 𝑥′)𝑓(𝑥′) 𝑑𝑥′ = 𝑓(𝑥) 

Substitute in the relevant functions in the present case: 

𝐷∫𝐻(𝑡)𝐴𝑡 exp (−
𝑡

𝜏
) 𝑔(𝑡′) 𝑑𝑡′ = 𝐴𝑔(𝑡) 

 Where we our solution: 

𝑣(𝑡) = ∫ 𝐻(𝑡)𝐴𝑡 exp (−
𝑡

𝜏
) 𝑔(𝑡′)

𝑡

−∞

𝑑𝑡′ 

Thus we can write the differential equation: 

𝑑2

𝑑𝑡2
𝑣(𝑡) +

2

𝜏

𝑑

𝑑𝑡
𝑣(𝑡) +

1

𝜏2
𝑣(𝑡) = 𝐴𝑔(𝑡) 

Modelling a Cortical Column 

These methods can be applied to model a cortical column. In such models, functionally equivalent 

neurons are lumped together into a single node. The behaviour of the resulting circuitry should be 

prototypical for individual units in the underlying neural network. 



 

In one canonical circuit model, there is one excitatory neuron, one inhibitory neuron, and one excitatory 

pyramidal neuron. 

 

Parameters in these models include the time constants, synaptic gains, maximum firing rate, and 

connection weights. These are derived from experimental data from rodents, monkeys, and cats. 

EEG Generation 

The value of neural mass models can be analysed by studying how parameters affect the simulated EEG 

and comparing to experimentally recorded EEGs. Such comparisons have found that altering the time 

constants reproduces oscillation patterns analogous to those found in various EEG waveforms. 

 



The parameters of EEG models can be learned from dynamic data feeds using a technique called Kalman 

filtering. Kalman filters work by comparing the predicted state variables from a stochastic model of a 

dynamical system, and then updating these predictions based on the observed values that are made in 

that period. 

 

Basic neural mass models can be extended by coupling multiple such models together as input-output 

pairs. 

 

Neural Interfaces 
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Electrical Stimulation 

Stimulating electrodes causes currents of ions to flow in tissue. This elicits action potentials in 

surrounding neurons. 



 

Different forms of stimulation can be used, but typically charge-balanced biphasic phases are used, 

where both phases are symmetric so as to ensure no net charge enters or leaves the tissue. Interphases 

gaps or chopped phases can be devised to allow the charge to persist for longer. 

 

The membrane properties of neural tissue can be measured by constructing a strength-duration curve, 

in which the pulse duration is plotted against the minimum current needed to elicit action potentials, 

and typically is a hyperbolic shape. The Rheobase current is the threshold current level as pulse duration 

approaches infinity, while the Chronaxie is the pulse width at a current level twice rheobase. 

 

Stimulation Parameters 

Pulse rate 



• An increase in the pulse rate will increase the stimulation of the excitable tissue. 

• Each individual nerve (or muscle fibre) has an upper limit on the rate at which it can respond, 

due to refractory effects. 

• However, other (more distant) nerves or fibres will respond as the pulse rate increases. 

• The response of the population of fibres tens to lose synchronisation as the pulse rate increases. 

Pulse amplitude 

• An increase in the pulse amplitude will increase the stimulation of the excitable tissue. 

• With larger amplitude the current will spread more broadly thus exciting more (distant) nerves. 

• In general the current amplitude will be set to remain between the threshold of activation and 

some upper bound (often called the maximum comfortable level). 

Pulse duration 

• An increase in the pulse duration lowers the threshold of activation of nerve fibres. 

• The same level of stimulation can be achieved by using shorter pulses with higher amplitude or 

longer pulses with lower amplitude. 

Parkinson’s Disease 

Deep brain stimulation can be used to treat the symptoms of Parkins’s disease. The targets of this 

stimulation are the subthalamic nuclei and globus pallidus, all targets of the dopaminergic system. Deep 

brain stimulation involves the implantation of a neurostimulator, which sends electrical impulses to 

specific parts of the brain. It is recommended for people who have motor fluctuations and tremor 

inadequately controlled by medication, or to those who are intolerant to medication. 

 

The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role 

in reward and movement. Parkinson's disease is characterized by the loss of dopaminergic neurons in 

the substantia nigra pars compacta. 
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Brain-Computer Interfaces 

Brain-Computer Interfaces (BCI) or Brain-Machine Interface (BMI) is a technology to communicate 

between the human brain directly to a computer without any physical contact. The idea is to bypass 

damaged or removed neural connections between a brain region (such as the motor cortex) and the 

effectors (such as muscles) by connecting both to an external computer. 

 

There are three main methods of detecting brain activity. The more invasive methods can use smaller 

electrodes, and hence there is higher resolution and less noise. 

• Electroencephalogram from the scalp (non-invasive), includes EEG, MEG, and fMRI. 

• Electrocorticogram from the cortex surface (invasive), includes stentrodes and microarrays. 

• Intracortical recordings from electrodes deep in the brain (highly invasive). 

 

BCIs need to measure and interpret neural activity so as to produce useful motor responses. Volitional 

changes in oscillatory activity near the sensorimotor cortex, known as sensorimotor rhythms (SMRs), 

can be measured, and localised using Common Spatial Patterns (CSPs). This helps to linearly combine 

information from multiple EEG electrodes to accentuate SMR activity. 



 

EEG and MEG 

A forward model involves computing the scalp potentials at a finite set of electrode or sensor locations 

and orientations (called channel configuration) for a given predefined set of source positions and 

orientations (source space). There are four components of a forward model: 

1. A head model: need to know how the electric currents generated at the source spread 

throughout the volume conductor (head). Typically four-layered concentric circle model is used, 

corresponding to the brain, the CSF, the skull, and the scalp. 

2. A sensor description: need to know where the sensors are that pick up the activity coming from 

the sources. 

3. A source model: need to know where the sources are within the brain. 

4. A lead field: for each source we calculate the electric potential vector at each sensor (electrode). 

 

The inverse problem involves using the forward model to fit parameters of the model against the EEG 

data. 



 

Pros and cons of the two techniques: 

• MEG is more sensitive to currents tangential to the surface of the scalp, EEG is sensitive to 

tangential and radial neuronal activities. 

• Magnetic fields are not distorted by the tissue the scalp, skull, cerebrospinal fluid, and brain.  

• MEG provides better spatial resolution of source localization (2‐3 mm) than EEG (7‐10 mm). 

• MEG hardware is costlier.  

• Patient setup is shorter with MEG compared to traditional EEG.  

 

 



Functional magnetic resonance imaging 

Increased neural activity leads to a delayed increased provision of bloodflow, as shown in the diagram 

below. This is called the BOLD response. 

 

Hemoglobin differs in how it responds to magnetic fields, depending on whether it has a bound oxygen 

molecule. Deoxygenated hemoglobin (dHb) is more magnetic (paramagnetic) than oxygenated 

hemoglobin (Hb), which is virtually resistant to magnetism (diamagnetic). Magnetic spins of proton 

nuclei are aligned using a strong external magnet, and then a brief RF pulse applied to the field, which 

causes the nuclei spins to align in phase. However this is not an equilibrium, so the system will gradually 

relax back to a distribution of phases. This relaxation time is called the spin-spin transverse relaxation 

time, 𝑇2
∗. 

 



  

This decay occurs more rapidly in dHb compared to Hb because of the former’s greater magnetic 

interaction and the resulting larger local field inhomogeneities. Hence, the more oxygen in the tissue, 

the more slowly the magnetic signal decays, and hence the larger the BOLD signal. 

 

fMRI is non-invasive and has high spatial resolution, with minimal setup difficulty. However, it is a 

measure of metabolic input rather than neural processing directly. It also has poor temporal resolution, 

and can be affected by various factors such as drugs, pathology, age, and attention. 

Stentrodes and Microarrays 

Stentrode (Stent-electrode recording array) is a small stent-mounted electrode array permanently 

implanted into a blood vessel in the brain, without the need for open brain surgery. It is in clinical trials 

as a brain–computer interface (BCI) for people with paralyzed or missing limbs, who will use their neural 

signals or thoughts to control external devices. 



 

A microelectrode array is a more invasive devise implanted on the surface of the brain. It can measure 

extracellular potentials from a specific area using its array of electrodes. Significant processing is 

required to extract individual action potentials. 
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Standard Methods 

A phosphene is the phenomenon of seeing light without light entering the eye. The fundamental idea of 

constructing retinal implants is to find a mapping from patterns of electrode activation to patterns of 

retinal activation, which will then map into perceptual experiences. As shown in the figure below, 

adding more electrodes should increase the resolution, and hence allow sharper depiction of images. 

However, this analysis assumes that phosphenes do not to overlap, even at high electrode densities. 

 

Unfortunately this assumption is not accurate. Even with small electrodes, the distance between the 

electrodes on the surface of the retina and the retinal ganglion cells behind them, is far more important. 



There is a great deal of ‘activity spreading’ from each electrode (red dot) to reginal activation (white 

phosphene), so the simple approach of making electrodes smaller won’t work. 

 

Linear Current Steering 

A more sophisticated approach to avoid these limitations is known as current steering. Current steering 

involves simultaneous stimulation of several electrodes at once, so as to produce an overall activation 

pattern on the retinal ganglion cells that is more useful than one produced by activating electrodes one 

at a time. For example, the grid below shows a combination of positive (pink) and negative (red) current 

injected into various electrodes, which produce an overall pattern of ganglion activation (black curve) 

which is more tightly localised than is possible by activating just a single electrode at the corresponding 

location. 

 

This basic approach can be refined to construct a method in which arbitrary patterns of ganglion 

activation can be produced by the right combination of electrode activations. The first step is to define a 

forward model, specifying the retinal ganglion activations 𝑟̃ that result from a given set of electrode 

activations 𝑠̃. The matrix 𝑊 describes all the current spreads for each electrode. 



 

Now we simply invert the forward model to solve for the required activations needed to produce a 

desired target image. Note that in practise the matrix 𝑊 is seldom invertible, so a pseudo-inverse must 

be used instead, via Singular Value Decomposition: 

𝑊 = 𝑃𝐷𝑄𝑇 

𝑊+ = 𝑄𝐷−1𝑃𝑇 

Where 𝑄 and 𝑃 contain the orthogonal eigenvectors of 𝑊𝑊𝑇 and 𝑊𝑇𝑊 respectively. 

 

 

This approach results in a much superior image quality compared to conventional methods. 



 

Rectified Current Steering 

There is a further aspect to the story, however, since experiments show that only the absolute value of 

the electrode current matters, meaning that positive and negative electrode currents both yield the 

same activity in retinal ganglion cells. This represents an opportunity to ‘utilise’ high-contrast lines that 

are not available in the pure linear model. This approach is called a rectified linear model. 

  

Whereas before we calculated the activity using 𝑟̃ = 𝑊𝑠̃, now we use the formula 𝑟̃ = |𝑊𝑠̃|. Previously, 

negative currents were only used to attenuate and shape positive current. Now, total negative values of 

𝑊𝑠̃ are used to directly create retinal activation. Unfortunatley we now cannot use pseudo-inverse 

matrix methods, and must solve for 𝑠̃ using numerical methods. This is NP-hard, and is done using 

simulated annealing and other techniques. 
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Cochlea Implants 

Cochlea implants are beneficial for people with profound sensorineural hearing loss, who do not benefit 

from conventional hearing aids. This means that the damage exists at the level of the cochlea or hair 

cells, while the auditory pathway from the cochlea to the brain is intact. The technology consists of two 

main components: one implanted internally and the other worn externally. 

 

The device works as follows. First, sound is detected by microphone and converted into electrical signal, 

which is then sent to the speech processor. The input signal is analysed and relevant features are 

extracted and encoded. The coded signal is then sent via the transmitting coil, through the skin, to the 

receiver as an RF signal. This is to avoid long-term implantations protruding through the skin, which are 

very difficult to maintain without infection. The implanted receiver then decodes the RF signal to 

determine the electrode number, stimulation level and stimulation rate. This signal is transformed into 

the appropriate electrical pulses in the electrode array in the cochlea, which stimulates the nerves inside 

the cochlea. The receive also sends telemetry data back to the external unit, for diagnostic and 

recording purposes. 



 

The electrode array is wound into a flexible coil to fit inside the cochlea. It must be strong but inert, with 

platinum used for the electrodes. The implanted component must be non-corrosive, totally sealed, and 

resistant to mechanical stresses and vibration. This is critical because it typically remains implanted for 

the life of the patient, and circuitry will be rendered useless if any conductive fluids seep through. A 

magnet on the receiver holds the externally worn coil in place on the patient’s skin and ensures that the 

transcutaneous link is reliable and efficient. 

 

Speech Processing 

The key bottleneck in the Cochlea design is the signal transmitted from the transmitter to the implanted 

receiver. As such, the speech processor must be carefully programmed to extract and send only the 

most important components of the recorded sound. The electrical encoding exploits the place 

mechanism for coding frequencies, with high frequencies near base of cochlea, and low frequencies at 

the more apical portion of cochlea. 



 

The diagram below summarises some of the key stages of the processing pathway. The signal first goes 

through a set of bandpass filters that divide the acoustic waveform into six channels. The envelopes of 

the bandpassed waveforms are then detected by rectification and low-pass filtering. Current pulses are 

generated with amplitudes proportional to the envelopes of each channel and transmitted to the 

electrodes through a radio-frequency link. 

 

Important calibration tests include: 

• T-Levels: the level at which the patient first identifies sound sensations. Determined by passing 

the person’s hearing threshold using an ascending method. 

• C-Levels: the maximum stimulation level that doesn’t produce an uncomfortable loudness 

sensation for the patient. 



Performance 

Experience with the cochlea is generally good when implanted later in life after acquired hearing loss. 

For congenital deafness, the performance depends on the age of implantation, with earlier ages of 

implantation showing the best outcomes. However, years of training are still required to obtain optimal 

performance. Performance also depends on the condition of the surviving hair cells, the health of the 

auditory neve fibres, and the central auditory neurons. 

 

 


