Neural Information Processing Systems

Membranes and Synapses

Lecture 2

Drift and Diffusion
Diffusion current: the movement of ions caused by variation in the carrier concentration. Direction of
the diffusion current depends on the slope of the carrier concentration.

Drift current: the movement of ions caused by electric fields. Direction of the drift current is always in
the direction of the electric field.

The electrical mobility u is the ability of charged particles to move through a medium in response to an
electric field that is pulling them. The drift velocity is given by v; = uE, where E is the applied field.

Diffusion is described by Fick’s Law:

D a[C]
Jaiee = o
Jaige is the diffusion flux (molecule/s - cm?)
D is the diffusion coefficient (cm?/s)
[C] is the ion concentration (molecule/cm?)
Drift is described by Ohm’s Law of Drift:

v

Jarife = —pz[C] I
Jarige is the drift flux (molecule/s - cm?)

V is the electric potential resulting from charge diffusion (/)
w is the mobility (cm?/Vs)

z is the ion valency

[C] is the ion concentration (molecule/cm?)

The Nernst Equation
Einstein’s relation between diffusion and mobility describes the connection between Jgigr and Jgrise in
equilibrium when the net flux is equal to zero. In this case we have:

Jariee + Jaiee = 0
av 2[C]
- C -
uzlC] dx dx
We can rewrite this using the chain rule:

a[c] o[c]ov

ax  aV ox

Hence we have:
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This holds at every location x, so the term in the parentheses must be zero:
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Using the Maxwell-Boltzmann distribution, the concentration is proportional to the exponential:

zqV (x)
C| x -
[C] eXp[ kT
This allows us to compute the derivative:
a[C] __xq (]
aV(x) kgT
Now the diffusion coefficient is given by:
C
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q

Substituting this back into the expression for the total ion flux yields:

Jnet = Jarite + Jaifr

~ v ac]
= HlllG TP oy
_ VvV  ukgTd[C]
]net - <#Z[C] a + q ox )

This is called the Nernst-Planck Equation. In molar form it becomes:

] uz[C1oV  ukgT d[C]
B NA a qNA W

J aV  RTI[C]
N_A = —<UZ[C]$+U?W>

u is the molar mobility (cm?/V - sec - mol)
R is the ideal gas constant (1.98 cal/K - mol)
F is Faraday’s constant (96,480 C /mol)

Multiplying this equation by zF yields the current density:



Lot = 2[CIF A RT—a[C]
net — uz a uz ax

The Nernst equation can be derived from the current density form of the Nernst-Plank Equation when
the net current density over the membrane is equal to zero.

Inee =0
v a[C
= (uz?[C]F—+ quTg
0x 0x
ov a[C
=zF[C]—+ RTg
0x ox

a9V RT 1 9[C]

a__ZF[C] 0x

RT (*2 1 0[C]
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RT] [Clout

;= n
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This equation gives the potential energy for each charge across the membrane due to forces of drift and
diffusion. There is a unique equilibrium potential (also called reversal potential) for each ion species i. If
the membrane potential is equal to this equilibrium potential, there will be no net flow of that ion
across the membrane.

If a specific ion is at its equilibrium potential, it means the that inside and outside concentrations are
such that:

Ei = Em
Under typical conditions in a neuron, Na* and K+ ions are not at their equilibrium potentials.

Reversal Potentials
Various active pumps and exchangers plus leakage channels -> ionic concentrations inside and outside
the cell -> reversal potential for each ion -> equilibrium membrane potential.

The resting potential for the cell membrane as a whole is given as a weighted average of the
concentrations and conductances of the individual ions, as expressed by the Goldman equation:

Em

— E <pK [K+]out + PNa [Na+]out + Pci [Cl_]out>
F Pk [K+]in + PNa [Na+]in + Pci [Cl_]out

Where p; is the permeability of ion i. Note that during membrane depolarisation or hyperpolarisation,
the ionic concentration doesn’t change very much. Mostly the change in membrane potential is brought
about by changes in the membrane permeability of a specific ion. For example, when the sodium
channels open, py, increases dramatically, thereby pushing the membrane potential closer to the
equilibrium potential for sodium.
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Ion Channels

Membrane ion channels are like gates, which selectively permit or block the passage of particular ions
across the plasma membrane. Changes in conformation of the proteins open and close the channel. The
three major types of channels are: voltage gated, chemically gated, and mechanically gated. Channels
can be either activated, deactivated, or inactivated (unable to open).
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Action Potential Initiation

Action potentials are brief, all-or-nothing reversals of the membrane potential, brought about by rapid
and transient changes in membrane ion permeability. Action potentials are generated by depolarisation
on the surface of the membrane causing voltage-gated ion channels to open. This leads to gy,
increasing, pushing the cell membrane closer to the equilibrium for sodium. However, as the cell
continues to depolarise, voltage-gated potassium channels open, thereby increasing gx and hence
pushing the cell membrane back towards the equilibrium potential for potassium.
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Action Potential Propagation

The initial action potential is usually confined to a localised area on the cell membrane surface. This
depolarised area of the cell creates a local current sink, which tends to depolarise the regions around it.
This sets up a wave of depolarisation that spreads throughout the entire surface of the membrane. After
the depolarisation wave passes by, the sodium channels remain inactivated for a period of time,
resulting in an absolute refractory period. During this period, the cell cannot depolarise again, hence
preventing the action potential from travelling backwards.



Cell type Range of T, (ms) Speed (m/s)

Nerve 05-1.0 20— 140

Skeletal muscle 20-50 3.0-50

Cardiac muscle 150 — 300 003-04

Hodgkin and Huxley Model
Hodgkin and Huxley modelled the neuron current based on the following circuit:

outside
tIx tINa Hr tic
gK YdNa gL — Cm

.l_ Ex w= ENa T EL

inside e

This yields the equation:

dv
Im= CmE+IK+INa+IL

Written in terms of conductances and voltages this becomes:

av
L (t) = Cpy % + gk (V, )V = Ex) + gna(V, OOV — Ing) + 9,(V — EL)

Note that here it has been assumed that the leakage conductance is constant with respect to time and
voltage, and the capacitance is also assumed to be constant. The capacitance is determined by the

phospholipid bilayer, and is not affected by the ion channels.

Based on a series of voltage clamping experiments made with giant squid axons, Hodgkin and Huxley
parameterised the conductances as follows:

gk (V,t) = Ggn*
gNa(Vr t) = GNam3h



Where G, and Gy, are experimentally determined maximum conductances, and n, m, and h are
functions that describe the activation of K channels, activation of Na channels, and inactivation of
Na channels respectively. They have the forms:

dm

a an(1—n)—pByn

dm

a am(1—m) — fpm
h

i ap(1—h) — Brh

Solving these differential equations yields the following plots:
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Substituting in these forms we have the Hodgkin-Huxley equations:

av(t) 4 5
I (t) = CmT + Ggn*(V — Ex) + Gygm°h(V — Iyg) + g, (V — EL)

We can observe the solutions on the following plots:
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Synaptic transmission

Neurons transfer signals across the synaptic cleft by releasing chemical messengers called
neurotransmitters. These bind to postsynaptic receptors, causing ion channels to open and hence
generating a postsynaptic potential, which can be either excitatory or inhibitory.

Note that the words presynaptic and postsynaptic only refer to a single synapse. Most neurons are

presynaptic to one group of neurons and postsynaptic to another group. Neurons in the CNS typically
receive 10,000-100,000 synaptic inputs.

Neurotransmitters
Neurotransmitters in the presynaptic neuron are stored in the synaptic knob in vesicles. A change in
potential caused by an action potential triggers the opening of voltage gated Ca2+ channels in the

synaptic knob, causing it to flow into the cell. Different neurotransmitters cause different effects on the
postsynaptic neuron:

e Glutamate is always excitatory.
e Glycine is always inhibitory.

e Norepinephrine can be either excitatory or inhibitory.

The depolarisation or hyperpolarisation produced by release of neurotransmitters by a single

presynaptic neuron is called a postsynaptic potential (PSP). These can either by excitatory depolarisation
(EPSPs) or inhibitory hyperpolarisation (IPSPs).



Neuromodulators are chemical messengers that bind to neuronal receptors but do not generate PSPs.
Neuromodulators bring about long-term changes that modulate (depress or enhance) synaptic
effectiveness. They may act either pre-synaptically or post-synaptically.

Summation of PSPs

A single PSP is usually not enough to generate an action potential. Instead, usually multiple PSPs must
be combined. This can occur due to either spatial summation, where PSPs over different presynaptic
inputs that are spatially separated are combined, or temporal summation, where the PSPs due to one or
more presynaptic inputs arriving in a short period of time are added together.

Networks of neurons

Neurons are linked to each other through enormous networks involving convergence and divergence of
the neural connectivity. Neural connectivity changes mostly during early development, while synaptic
efficiency changes regularly during life. Synaptic efficiency refers to how strong a given synaptic
connection is, and is determined by the amount of neurotransmitter released by the presynaptic
neuron, and the magnitude of the resulting response in the postsynaptic neuron.

Neural Coding

Lecture 5

Types of Neural Coding
Neurons carry information in the timing of their action potentials. Because all action potentials are
essentially identical, we can describe the full spike train as a sequence of firing times:

F ={ty,ty, ..., t,}

We can write this in terms of the sum of idealised infinitesimally narrow spikes represented by delta
functions:

() = z 5(t—1t)
i=1
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There are many different forms of neural coding found in the brain:

e Rate code: The average rate of firing is important (the timing of individual APs is stochastic).

e Population code: Information is carried by the instantaneous pattern of activity of a population
of neurons.

e Place code: Information contained in the set of neurons that are active, where different neurons
respond to different subsets of the receptive field.

e Temporal code: The timing of the individual APs carries information (e.g. in phase locking).

e Spatiotemporal code: Includes both place and temporal aspects.

Neuron Firing Rates
There is no single method of defining the firing rate of a neuron. The simplest method is to simply count
the number of action potentials in time T and divide by that interval:

1 (T n(T)
T=TJ;) S(t)dt=T

Alternatively, one can average over several repetitions of the same stimuli for the same neuron:

(n(T))
T

1 T
= f (S(®)dt =
0



mput | e Spike density in PSTH
tstrun| [ || I

1 1
i | | | p—EEnk(t,t+At)

—  PSTH Peri-stimulus time histogram
—t -+ Count spikes in time bins

At over all repetitions of the

experiment.

Measuring the firing rate over time is difficult, since there are only a finite number of action potentials,
so there is insufficient information to precisely define the rate as a continuous function over time. The
simplest approach is to simply count the number of action potentials in a set of pre-defined and
positioned bins. This, however, leads to a lumpy estimate which is dependent on the positioning of the
bins. To avoid this, a window function can be integrated with the spike train, effectively allowing bins to
be applied to each time interval:

Test (t) = fooW(T)S(T)dT

0

Potential window functions include rectangular, Gaussian, or exponential:
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Population Coding
Population codes are defined in terms of activity, which refers to the firing rate of a pool of neurons

over a single trial.

_ 1 n(AD)
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Place Coding
Place coding involves information being encoded by which specific neurons in a particular population

are firing, given that different neurons respond to different stimuli in accordance with their tuning
curves. For example, typical frequency tuning curves in the normal mammalian cochlea.

Frequency Tuning Curves

80
60

40

20

~~
-
o
»
m
O
N
-
w
>
w
-
w
z
O
-

0 1
0.2 05 1 2 5 10 20
TONE FREQUENCY (kHz)

Example: Visual orientation tuning curve

A s B
-‘ 60
Bar of light  *; 501

field A\
Direction % Neural 7
moved v recordings - 20 0 20 40

5 (orientation angle in degrees)




Example: Motor orientation tuning curve
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Temporal Coding

Temporal coding involves information being encoded in the specific timing of the arrival of spikes, or at
least high-frequency variation in the rate code. This provides much more precise information about the
temporal variation of the stimulus. This can also be called correlation coding, since it entails that

information is carried not just by the rate of firing, but by correlations between firing times. For
example, information could be carried by spike-time intervals.

An example of where temporal coding is used is in sound localisation, where cells only fire if they detect
coincident activity from each ear.
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The measure of synchronization r between two spike trains can be defined in terms of how much the N
spikes arranged into M bins, with h,, spikes per bin, resemble sine or cosine functions:

1 < . [2mm
5o 3 b (2
m=1
M
g _1 b 2mm
e = 2 tmeos(57)
m=1

r= /s§+sg

Other mechanisms of temporal including are summarised below.
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The peristimulus time histogram or poststimulus time histogram, both abbreviated PSTH, are histograms

of the times at which neurons fire relative to the time of the stimulus.
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Many neurons respond to place (spatial) and temporal input. This can be quantified using a technique
called reverse correlation, in which we determine what stimulus is responsible for neural firing. This is
quantified using the spike-triggered average, which is the average input of the stimulus s(t)

immediately preceding each action potential at time ¢;.

1 n
C(t) = - Z s(t; —t)
(i=1)

This can be rewritten as an integral over the neural response function:

1 T
c(t) = Zf S)s(t—1)drt
0
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Stochastic Processes

We can model the spike times as a stochastic process, with the assumptions we make affecting the
properties of the resulting spike train.

e A point process is a stochastic process that generates a sequence of events, such as action
potentials. The probability of a spike at any given time could depend on the entire history of
preceding spikes.

e Arenewal process is a point process where the probability of an event occurring at a specific
time depends only on the immediately preceding spike (intervals between spikes are
independent).

e If there is no dependence at all on preceding spikes (the spikes are statistically independent),
the point process is called a Poisson process.

The simplest type of point process is a homogenous Poisson process, where the firing rate is constant
over time.

Stochastic process
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Homogenous Poisson Process
The probability of a specific sequence of spikes occurring at arbitrary times is denoted P[ty, t,, ..., t,].
Under a homogenous Poisson process, the probability of such a sequence is given by:

At\"™
P[tll tz, T tn] =n! PT[n] (?)

Where Pr[n] is the probability of a sequence of n spikes occurring with time T. The factor of n! Adjusts
for the number of combinations of n spikes that is possible, and the final term is for normalisation.

To compute Py[n], we divide the time T into M bins of size At = T /M and take the limit At - 0, at
which limit there is no possibility of two spikes occurring in the same bin. The probability of n spikes
appearing one each in n bins is (rAt)™, while that of the remaining M — n bins each having no spikes is
(1 — rAt)M~™. The number of ways of putting n spikes in M bins is given by the binominal coefficient,
yielding the expression:

M!
= 1i [ n _ M-n
Prin] = Al%r_)no (M —n)!'n! (rAt)"(1 =rAt)

In taking the limit we note that since M — oo whle n is fixed (by assumption), we have M —n~ M =

n
T/At,and —=— ~ M" = (+) . Thus we find:

(M-n)! At
T
. M n —TAt\ At
Pr[n] = Al%r—{lo? (rAt) ((1 - TAt)—rAt)
1 T n 1 -rT
=—lim {— (- EY;
Prln] n!Al%ino(At) (rat) ((1 raT t)
-rT

1 _1_
Pr[n] = 1 (rm)™ Alir_r)lo ((1 — rAt)—rAt)

1
Prin] = — (rT)" exp(—1T)

Substituting this into the formula for the probability of a generic sequence we have:
Plty,ty, ..., ty] = r"(At)" exp(—rT)
This is a Poisson distribution.

Interspike Interval Distribution
For a Poisson distribution, the probability of an interspike interval falling between 7 and t + At is found
by settingn = 1 and T = 7 in the above formula:

Plt < tjy1 — t; <1+ At] = rAt exp(—r7)
The density function for infinitesimal At becomes:
p(7) = rexp(—7r7)
The interspike interval therefore has the properties:

1
.urz;
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If the coefficient of variation of the spike count is greater than 1, this means it is not a Poisson process.
In such cases the variance grows faster than the mean as the trial duration increases, indicating the
presence of long-term correlations in the data.

We can summarise this as follows. If for every t > 0 the number of arrivals in the time interval [0,t]
follows the Poisson distribution with mean rAt, then the sequence of inter-arrival times are
independent and identically distributed exponential random variables having mean 1/r.

Note that a Renewal Process is a generalisation of a Poisson process, in which the holding times do not
need to be exponentially distributed.

The Poisson Spike Generator

A series of spikes can be generated from a known firing rate r(t) using the Poisson Spike Generator
method. Each period of time At, we simply generate a random number x uniformly distributed between
0and 1. If x < r(t)At, then a spike is fired, otherwise no spike is fired. This will deliver a series of
Poisson distributed spikes (with exponential interspike intervals) so long as At is small compared to r(t).

An alternative, and generally faster way to do this which works for constant firing rates, is to randomly

draw the interspike interval instead of the number of spikes per interval, as we can skip all the intervals
without any spikes. This works by randomyl generating a random number x and setting At = t;.1 — t;

using the equation to compute the next spike time t;, 4:

x eXP(—T(tHl - ti))
—7(tiy1 — t;) = In(x)

1
tivi— i = —;ln(x)
1
tiv1 =t — ;ln(x)
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Definition of Entropy

Entropy is a measure of variability, or the amount of information, in a set of responses. The unit of
information is the bit, where 1 bit is the amount of information sufficient to choose between two
equally likely alternatives.

The information content of a single response is equal to:

s(x;) = —logy(P[x;])

The entropy of an ensemble of outcomes, namely a random variable, is:
S() == ) POX) log,(PCO)
i

For K equally likely outcomes, the entropy becomes:




S(X) = Z log, ( )

S(X) = 10gz(K)

The entropy thus turns out to be the number of digits required to write K as a binary number less one.

Mutual Information
Applied to the case of a stimulus s generating firing rate outputs r, we can define the response entropy

of the firing rate output as:
= = ) Plrllog,(PIr])
T

The amount of entropy that is left over after conditioning on the stimulus is called the conditional
entropy, and is given by:

Sris = ZP rls] loga(PIrls))

The average conditional entropy is known as the noise entropy. It gives the amount of entropy in r that
is not attributable to the stimuli. It is written as:

Snoise ZZP S Sr|s
Snoise = — ZP Zprls 10g2 T|S]

The mutual information entropy is the reduction in entropy of r that occurs when we learn the value of

stimulus s. It thus represents how much the firing rate tells us about the stimulus. It defined as the full
response entropy minus the noise entropy:

I TLOLS@

ZP 1log, (P[r )+ZP ZP [r|s]log, P[r|s]
Zzp P[r|s]log,(P[r] )+ZZP P[r|s]log, P[r|s]

ZZP P[r|s] (—log,(P[r]) + log, P[r|s])

ZZP P[r|s] logZ%

Entropy of Spike Trains
The information associated with a specific interspike interval of T using time bins of size At is:

—log (p[7]A7)

To calculate the entropy associated with the source neuron, we need to take the expectation over all

possible lengths of interspike intervals, and then multiply by the number of intervals N = é =7T:



S = N x E[-log,(p[r]A7)]

S= —rTf plt]log,(p[t]AT) dt
0
For a homogenous Poisson process, we have p[t] = r exp(—rT), making the integral:

S = —rTf rexp(—r7)log,(rAt exp(—rt)) dt
0

S=—rT J:or exp(—rt) ln(rArlz)é))(—rr)) dt

riT [©
$= "y J, SPCTRInCrATexp(=rT) dr

Letu =rt,du = rdt

T (©
) fo exp(—u) In(rAt exp(—u)) du
T (©

" 1n(2) J,
rT

) <ln(rAr)J;) exp(—u) du —J;)

25 (n(80) [ exp(-)]f ~ [=wexp(—u) = exp(-w]5)
rT

“In(2)
—rT (logz(rAT) —

S=-

exp(—u) [In(rAt) — u] du

[o0]

uexp(—u) du>

(In(rAD) [1] = [-—-1D

o)

—1T(log,(rAt) — log,(e))
rAt
—rTlog, (7>

e
rT log, (E)
T (log,(e) — log,(rAt))

| A
= 1T log,(e) (1 B ?i;ie;)>
rT

S = m(l — In(rAr1))

Entropy is maximised at the rate:

as T rT At
o = in (1~ ) + s (‘E)
T rT (AT
gy (L~ Inra) = s (E)

(1-In(rA7)) =1
In(rAt) =0
rAt =1
1

T:E



Neuron Models

Summary of Neural Models

Model

Equations

Notes

McCulloh-Pitts

1if Z Wijx]'(t) = 91’
Si(t + At) = o

0 if Z Wijxj(t) < 91'
j=1

Binary output,
deterministic

N
j=1

Hopfield N Binary output, stochastic.
Neurons (+1 with prob g <Z Wi]-x]'(t))
Si(t + At) = .
—1 withprob1—g (Z Wijx]-(t))
j=1
Firing-Rate Rate-based,
Neurons deterministic.

+9.(V-V,)
gk (V,t) = Ggn*
gNa(V: t) = GNamgh

Leaky Integrator avy Vv Rate-based,
CE 7 =L@ deterministic,
Si(t) = (Vi(t) —0;) subthreshold dynamics.
Leaky Integrate c av; + Vi _ L) Spiking, deterministic,
and Fire dt subthreshold dynamics.
S.(6) = {a(t) ifV;(t) = Vi
if Vl(t) < Vth
Stochastic Leaky c d_V K . dN,(t) —a dN;(t) Spiking, stochastic,
Integrate and dt e dt Yodt subthreshold dynamics.
Fire S(t) = {6(1:) ifvV(t) = Vy
ifV(t) < Vi
Conductance- 1(6) = g(t — ti)(Ve = V(D)) Spiking, deterministic,
based Neurons av(t) V() subthreshold dynamics,
It + R 9 (Vsyn - V(t)) conductance-based.
S(t) ifV(t) = Vy
S® = {0 ifV(t) < Vi
Hodgkin-Huxle av Spiking, deterministic,
neurgon ! In = moae +9x(V = Vi) + gna(V = Vo) sEbthrgeshoId dynamics,

conductance-based.

dt

dn
E =ap,(1—n) — ppn
dm
E = ap(1—m)—B,m
dh
— = an(1—h) = Brh
FitzHugh- dv V3 Spiking, deterministic,
Nagumo dr V- 3 Wi subthreshold dynamics,
dw conductance-based.
—=¢lV +a—bW)
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McCulloch-Pitts Neurons

The simplest neuron model, in which the output of the point neuron is either 0 or 1, and the activity is
computed incrementally at discrete moments of time in terms of the j = 1, ..., N inputs neurons, each
with activity x;. The output §; at the next time step is given in terms of the output threshold 6;:

N
(1 if Z Wi]'Xj(t) = 9i
j=1

Si(t +At) = o

0if Z Wi]'Xj(t) < Gi
=1

J

Hopfield Neurons
This adds stochastic behaviour to the McCulloch-Pitts neuron.

N

J=1

Si(t+ At) = N
—1 withprob1—g <Z Winj(t))
=1

]

Where g(h) = with 8 being the inverse temperature, a measure of noise. In the limit where

1
1+exp(—Bh)’
[ — oo, the rule becomes deterministic and the Hopfield neuron reduces to the McCulloch-Pitts neuron.

:
| S — - —
p-4
0.8
(hy=—"
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Firing-Rate Neurons
In these models the neural output is not binary, but is described as a firing rate:

N
Si(t +At) =9 ZWUXJ(t) —0
j=1

The activation function g can take various forms, such as a sigmoid or threshold-linear function.



Leaky Integrator Neurons
Continuous time rate-based models are sometimes called ‘leaky integrators’, as they simulate a
membrane potential which gradually adds up input signals over time. The evolution of synaptic voltage
in such models is given by the equation:

av, v

This is essentially an RC-circuit, with time constant T = RC, which acts like a low-pass filter.

U,(0)=g(V()-6)

The output in terms of firing rate is written as a function of the voltage and the threshold:

Si(6) = g(Vi(®) — 6y)

In response to a step current [ switched on at t = 0, the voltage is given by:

Wi Vi
dt R

V! + 1 V—I
tTRCTT C

Vie(%) —V,(t=0) =IR o (c) — 1]

Vie(%) = IR _e(R_tc) - 1] + VP

V,(t) = IR[1 - e(‘t/Rc)] + V0e(-t/RC)

For very large values of RC and V;(t = 0) = 0:

o ~ 8|1 (1+ () )|

I
Vi) = ot



I 1(07)=0.85 nA
009 C:] I‘lF
T=w
- Vi0)y=0V
§ _R:80MQ,T:80msec
003 R =40 MQ), =40 msec
222 R =20 MQ, 7 =20 msec
: 1 (sec) 25

Given the firing rate, a series of output spikes can be generated by modelling the neuron as a Poisson
neuron, in which output spikes are generated randomly as an inhomogeneous Poisson process governed
by the time-varying output rate S;(t) = g(V;(t) — 6,), which depends on the voltage.

Continuous output rate-based neurons can be combined to form neural networks. In this case the
synaptic input is added to the input current:

av, v
C -

N
LD (O + ) wy S0
j=1

|Si(t) =g (®) — 6) |

Delta function current

The simplest model of synaptic inputs is instantaneous current injection:

N
Isyn(t) = z Wij Z 6(t - tjk)
=1 K

Where tj is the time when the jth input neuron fires its kth spike.
For simplicity, we can consider a single spike at one synapse of the form:
Isyn(t) = Cad(t — tin)

In this case the output becomes:

C—+ EL = Cad(t — ti)
, 1
Vi +RVi = a5(t — tin)

1
Solve using the integrating factor e/rc?t

1 1 1 1
Vi’efﬁdt + ﬁViefﬁdt =abd(t— tin)efR_Cdt



%[Vie(%)] =ad(t— tin)e(%)

fotl%[vie(%)] dt=a fot, 5(t — tyel®e) de

For the RHS we need t — t;;; > 0, so use Heaviside function:

)]

(=2) (1)
Vie\RC) — V;(t = 0) = aH(t — t;,)e'\RC
Vi(t) = aH (t — ty,)e ¢ tm)/RC

t' tin
aH(t — ty)e(7e)

0

T T T T T
0.09~

0.08 - ](t)

0.07~ !

0.06 - -

0.05-

")

0.04 ~

0.03-

0.02-

0.011-

-0.02 0 0.02 0.04 0.06 0.08 0.1

f (msec)

Exponential current

Alternatively, the synaptic input can be modelled as an exponential current:

Ca
Isyn(t) = H(t - tin) T_ exp(_(t - tin)/Ts)

In this case the output becomes:

av, v Ca
CE + = =H(t— tin)ZeXp(—(t — tin)/Ts)

14 1 a
VitprVi=H{t—ty) T—SGXP(—(t — tin) /Ts)

1
Solve using the integrating factor elrc?t,

1 1 1 a t—t 1
Vl-’efRCdt + —ViefRCdt = H(t — t;,) —exp (— M) e/rc?t
RC Ts s

) = e ) e (2 0



t t' [ t—ti,
f i Vie(R_tC)] dt = s e(_ Ts +R) dt
0

t t a t RC l-ltinRCA Ts 4
[Vle(ﬁ):l = — e T,RC™ " T4RC "RCtTg dt
0

tin
tin t s—RC
Vie(%) —Vi(t=0) = Ee(r_s)f e(TRCTS ) dt
Ts tin

ty a (tm) RCt N
Vie<RC) = T_Se(TS)S——I;CH(t — tin) [e( RCzs )t]t.
Vie(%) = ae(tz—:) LH((; — tin) <e(T}s?Efsc)t — e('isQEff),;[_ﬂ)

7, — RC

Setting RC = t we can simplify this to:

Vi(t) = ar e(tTi_:l_%)H(t — tin) (e(%)t _ e(%)tin)

Ts — T
art t t Itin t tin tinItin t
:T -L-H(t_tin)<e(T Ts Ts T)—e(f Ts Ts T)>
g —
at _t tin tin ¢
= H(t — t;,) (e( i) _e(lT"‘?)>
Ts — T

at
Vi(t) = :H(t — i) (et tin)/Ts — o= (t=tm)/T)
N

o_os: ) [(t) :

0.06 - -

0.05 N

N
= — >
004k i

o
=}
=2

r r r r
-0.02 0 0.02 0.04 0.06 0.08 0.1

f (msec)

Regardless of the spike function used, the total synaptic current due to several input synapses is:

ng ny
opn(9) = € ) ageSge® +C€ ) anSye(®)
k=1 k=1

Where ng and n; are the numbers of excitatory and inhibitory neurons respectively, each with its
corresponding constant a and firing rate S (t).

To implement a rate-based model with delta-function inputs, the following steps can be used:



Decay the membrane potential using V (t + At) = e 2t/Ty (¢t).

Update the time increment t = t + At.

Add synaptic inputs to V(t) using V(t + At) = V(t + At) + L5y (2).

Calculate the output using S;(t + At) = g(V(t + At) — 6).

Determine if the neuron generates a spike at this time, by testing if S;(t + At) > rand(1).

vk W E

Note that the procedure is slightly different for exponential inputs.
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Leaky Integrate-and-Fire Neurons

Integrate and fire neuron models have two separate stages: a sub-threshold summation of inputs which
occurs in the same way as in the rate-based model, and then the generation of a stereotyped action
potential when threshold is reached. When this occurs, the membrane potential is reset.

Output spike is generated
S (t- tou) Outputs v Threshold potential
h
Spike generation l
146 i Summation of
Summation . postsynaptic
! responses
Inputs v : J\ Reset potential
T : \
S0 (N time
seike Refractory period
Response to step currentatr=0
Firing rate model Integrate-and-fire model
vE DQ// A /‘|/ ////‘; /-’/‘lz ////l, //){
e A - L
z’/
- - T =40 msec ,{ = )_’
/'/ T = 40 msec 7 - — ,-// L—" -
7 -
vi,,.l————-—-,?}:f:;_-;;;_h—m 7 =20 msec o
T T =20 msec _/,.---"""'_ - e -
20 0 0 40 60 0 100 20 0 20 40 60 0 100
t (msec) t (msec)

The equation of an integrate-and-fire neuron is given by:

chi+Vi—1()
dt R

(8 ifVi(t) = Vi,
5;(t) = {0 ifV;(t) < Vth




Note that in this model spikes are generated directly from the membrane voltage, rather than indirectly
through the firing rate function S(V(t)).

Incoming excitatory and inhibitory spikes

s 1 1 1
o T 1T 11

V(t) Membrane potential threshold
N N M\
U R W
e | | = Ei
] W
Note: no refractory period
Output spike train
timé

The equation for the membrane potential with constant input is the same as for the leaky integrator
model:

Vi(t) = IR[1 — e CH/ROD] 4 y0e(-t/RO)
The minimum current needed to trigger an action potential is called the threshold current:

Vin
Iy = -2
th =]

If the initial voltage is zero, then an output spike will be generated at time:

Vin = IR[1 — eCH/RO]

Vin
Vin _ 1 _ o-e/ro)
R ¢

1 —_— = e(_t/RC)

t Ve
R
rc %8\" TR

Vin
ty, = —RC1 (1 — —)
th 0g R

If the refractory period is t;.. ¢, then the continuous firing rate f is given by:

1 1
B tth + Tref B Tref — RC log(1 - Vth/IR)




300

200
<f>
(Hz)

100

N ——

0 0.5 1 1.5
Input current (nA)

Using this equation, we can plot the firing rate as a function of the input I. As shown in the figure below,
if I is too low, the threshold is not reached an no spikes occur. In the limit of I — oo, the firing rate
saturates at f = 1/7 e

Stochastic non-Leaky IF Neurons
This is a simplified integrate-and-fire model that allows us to introduce how stochastic inputs work. In
the absence of a leak current the equation is:

Cd—vzl(t)

dt
(@) IfV () = Vi
S = {0 ifvV(t) < Vzh

If the neuron receives excitatory input from a Poisson distributed process N, (t) with mean rate y, and
synaptic weight w, then the membrane potential is a random process that shows random jumps:

dN
I(t) = aed_te

Hence, we can solve the membrane potential equation as:

v dN,

ac %eTar
a
V() = SNe(®

If a/C > Vi, then each synaptic input is sufficient by itself to cause a spike, and so the waiting time
between spikes is just the same as the waiting time between synaptic inputs. For a Poisson process the
distribution for the next spike is:

Pty St) =1 —eHet
If instead n inputs are needed to trigger a spike, then we have:

Vin
n=—
ae

Now the probability density for getting n inputs by time ¢ is:



_He (Het)" e Het

Pn(t) =1

This is called the nth-order gamma density. This gives rise to the following properties of the interspike
interval tqp:

o mean(ten) = n/He
o var(ty) =n/u;

o Cy(ty) =1/Vn
This means that the distribution becomes more concentrated about the mean as n increases.

Incorporating an absolute refractory period results in a higher mean interspike interval without changing
the variance, hence the Cy decreases. Thus, refractory periods reduce the relative variability of spikes.

We can modify this approach to incorporate both excitatory and inhibitory input:
Qe a;
V) = FNe(O) =2 N
The expected value of the voltage of such a process is a .t — a;u;t = ut. This is called the drift. The
variance of the membrane voltage is au,t — a?y;t = ot. This is the variance parameter. Note that

because there is no current leakage, prior to the production of a spike, voltage mean and variance
increase linearly with time.

Now we have the following interspike interval properties:

Vth nae
e mean(ty,) =—=—2=2
(t) =22 = 22
_ Vino? _ nago?
o var(ty) == 5= =5
1 g2\1/2
¢ G- (22
v (ten) Ve R
Note that if 4; = 0 so there is no inhibition:
na
mean(t;,) = —
na,
ae:ue

n
mean(t;,) = —

e
na,o?
var(ty,) = pE

2

_ Naelele
- 3,3
Aele

n
var(te,) = —
Ue

Which are the same as the values given before for the excitatory only case. It is evident that increased
inhibitory input increases the mean interspike interval, and also increases the jitter (variance).
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Stochastic Leaky IF Neurons
Now we add back the leak current to the stochastic integrate-and-fire model:

c dV % dN,(t) dN;(t)
it R Tat Y a
_ 5(t) ifvV(t) = Vy

S = {0 ifV(t) < Vi

This has the solution for the voltage of:

av V _ ae dNe(t) a; le (t)

dt  RC C dt C dt

1
Solve using the integrating factor elre?t and assuming V(0) = 0:

’ fidt 1 fldt Qe dN, (t) f a4 dN; (t) f dt
Vere tqeVe ™ =T 7ar T dr
a (L) _ Qe dN,(t) (L)_ﬁ dN;(t) (L)
dt[VeRC]_C dt e T Tar o
YA "dN,(¢) &) Y dN(t) )
LE[V”C]‘”‘?O dt dt‘EO a e
() t! _ " dN,(t) ( AN " dN;(t) ( )
[Ve " ]0 CcJ, “at Ll M dt

Taking expectations of both sides yields:

E[V(t)e th a, f [dN . (t) d @ f [dN () it

E[v(0)]e(re) = % f pelFe) gr — & f e (R0 at
0

t
B (©)1e(Re) = Reagh, — ) [elre) 1]
E[V(D)] = R(aepe — a;u;)[1 — eH/RO]

In the limit where t = oo notice that the expected value tends to Ry, rather than diverging as in the

non-leaky case.

Conductance-based Neurons
In conductance-based models, the input current is now dependent upon the membrane voltage itself,

thus introducing an additional complexity into the model.

The membrane voltage at which the postsynaptic current changes between excitatory and inhibitory is
called the synaptic reversal potential, Vy for excitatory input and V; for inhibitory input. Note that

Isyn = gVsyn- As such we can write the postsynaptic current in terms of the reversal potential and
membrane voltage as:

1(0) = gt — ti) (Ve — V(D))




To take a time-average of the conductance, we will treat it as a constant g. The equation for the
membrane voltage is then:

dv(t) V(t)
dt + R =9 (Vsyn - V(t))

With the process of spike generation being the same as before:

(@) IfV () = Vi
S@) = {0 itV (t) < Vi

This is solved as follows:

av(t) N @

=9 (V;yn - V(t))

dt R
%4 1V gV— V.
+R +E = 9Vsyn
1+Rg g
V'+( RC )V:EVSY”

Which is the same as the leaky integrator neuron with time constant:

RC
1+ Rg

T, =
[ae
Solve using the integrating factor e’z :

1 1 1 1

7] = L1e0

dt C
t' d t t' ot
f E [Ve(?) dt = %Vsynf e(?) dt
0 0
tt g - et
] = Loty o]
t -t
veld) ~ e = 0) = Zan, [eld) - 1]
t -t
Ve(?) = %TVSW e(?) - 1] +V
V() = %T[/Syn[l — oG] 4 Vet

Assuming V, = 0, we can compare this to the solution for non-conductance-based spiking models:

T
V(t) = ?Cgvsyn[l - e(_t/T)]
T
V(t) ==I[1—et/7]
C
We see that these equations are equivalent (given that V;,,,, = I/g), apart from the different value of 7.

For large conductance values, the effective membrane time constant is much smaller than the passive
membrane time constant of RC.
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Hodgkin-Huxley Neurons
The Hodgkin-Huxley neuron model is a conductance-based model that incorporates more complex

changes of g over time. The current equation is:

dv
Im= Cm_+1K+INa+IL

dt
outside
ik tIna tip tic
gK gNa gL e Cl?’l
—l— Ex wr= ENg Er

inside —

Substituting in the expression used in lecture 10 for a synaptic current (in this case one each for K, Na,
and leak current), we have:

av
Im: CmE+IK+INa+IL

av
Iy = CmE +gWV, )WV =V)+gWV, )V —Vyg) + g, (V—=V)

Note here that the K and Na conductances are voltage and time dependent, while the leakage
conductance is a constant. Hodgkin and Huxley parameterised the K and Na conductances using the

following equations:

gk (V,t) = Ggn*
gNa(V: t) = GNamgh

dn

E = an(l -n)— Bnn
ar am(1—m) — fpym
dh

T ap(1—h) = pph

FitzHugh-Nagumo Neurons
A simpler way to look at Hodgkin-Huxley-style models is to examine the abstract model developed by
van der Pol, Bonhoeffer, FitzZHugh, Nagumo, Arimoto and Yoshizawa. This involves only two equations:

Wy Y wai
dt 3

dW— vV + bW)
dt_¢ ¢

Where the parameters are settoa = 0.7,b = 0.8, and ¢ = 0.08. W is an abstract parameter which
represents the synaptic conductance changing over time.



This is called a singularly perturbed system, where one variable (V) changes much faster than the other
variable (W). We can represent the trajectory of the system over time using a phase plane plot. On this
we can plot the nullclines, the series of points where one derivative is equal to zero:

V3

0=V-———-WH+I
3

0=V +a—bW)
V3
W=V-—7+I1
3 +

1
W=E(V+a)

These nullcline equations are shown on the following plot:

25

If the system is on the W nulicline, then the trajectory can only be horizontal since only V can change. If
the system is on the V nullcline, then the trajectory can only be vertical since only W can change.

Zero current

Setting I = 0, we can solve for the stationary equilibrium point (intersection of the nullclines) as:

V3 o1
V——=—(V+a)

3 b

14 V3—1V+a

3 b b
v Ly ¥ _a_,
b 3 b
1V3+(1 1)1/ 20
3 b b
V3 3(1 1)V+30'7—0
0.8 0.8

V3 —3(=0.25)V + 2.625 = 0



V3 +0.75V +2.625 =0
This has a real solution of V = —1.2. The system will decay to this stable point in a spiral pattern.
Delta current

Now instead setting I(t) = Q&(t), we find that the value of V will jump by a unit Q. For small values of
Q, such as 0.4 or 0.55, V will quickly decrease once again, and after a small cycle the system will return
to equilibrium. By contrast, for large values of @, such as 0.56 or 1.2, V will rapidly increase further,
tracing out a large sweeping path before eventually returning to equilibrium. This corresponds to
depolarisation triggering an action potential.

Constant current

With a steady input current, the V nullcline is shifted upward, while the W nullcline remains the same.
This changes the position of the equilibrium point. The new equilibrium point is unstable, and the
system will trace out a large cycle called a stable limit cycle. This corresponds to a regular train of action
potentials.
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A useful rule is that the equilibrium point is unstable whenever the W nullcline meets the VV nulicline

where the V nullcline has a positive slope. In such cases, small deviations from the equilibrium will push

the system to the stable limit cycle.

Channel Model Neurons

These incorporate stochastic ion channel opening and closing as being the cause of the changes in
conductances. Individual this is probabilistic, but when the numbers of channels are large, behaviour
becomes predictable.



Multi-Compartment Neurons

These are an extension of conductance-based models which involve modelling a neuron as a series of

connected compartments, each of which has a cable equation that is solved separately, with connected

boundary conditions. The cable equation is given by:

ar

c 1 d [(a?dV\ L
dt  2ar dx\ dx toyn T le

Where a is the radius of the cylindrical cable segment, , is the intracellular resistivity, iy, is the

synaptic current per unit area, and i, is the electrode current per unit area.

Neural Learning

Lecture 12

The Synaptic Basis of Learning
Since neurotransmitter release is probabilistic, synaptic transmission itself is stochastic. Synaptic weight

is affected by the number of neurotransmitter release sites n, the probability of release per site p, and

the density of receptors q. The first two are presynaptic variables, while the last is postsynaptic. The

simplest expression for the average synaptic transmission is simply the product:

R =npq
Type Duration Location Occurrence Cause
Paired-pulse 100 msec | Presynaptic | Response to second single Increased presynaptic
facilitation presynaptic stimulus is greater [Ca2+] leads to a
than the first single stimulus. greater release of
synaptic vesicles
(higher p).
Augmentation | 10 sec Presynaptic | Repetitive stimulation increases | Increased presynaptic
the postsynaptic response. [Ca2+] leads to a
greater release of
synaptic vesicles
(higher p).
Post-tetanic 1 min Presynaptic | Brief, high-frequency stimulus Increased presynaptic
potentiation increases the postsynaptic [Ca2+] leads to a
response. greater release of
synaptic vesicles
(higher p).
Long-term Hours+ Pre- and Simultaneous presynaptic and Mediated by NMDA
potentiation postsynaptic | postsynaptic activity with high receptors.
intracellular [Ca2+] produces
sustained increase in
postsynaptic activity.
Long-term Hours+ Pre- and Simultaneous presynaptic and May be mediated by
depression postsynaptic | postsynaptic activity with low NMDA receptors
intracellular [Ca2+] produces
sustained decrease in
postsynaptic activity.
Spike-timing Hours+ Pre- and Upregulation of postsynaptic
dependent postsynaptic | firing rate when presynaptic




plasticity activity precedes postsynaptic
activity; downregulation in the
opposite case.

Activity- Hours+ Postsynaptic | Chronically elevated activity Regulation of AMPA
Dependent leads to reduction in synaptic receptors.

Synaptic weight.

Scaling

Short-term Synaptic Plasticity

In short-term synaptic plasticity, changes persist on the order of milliseconds to seconds. All forms of
short-term plasticity appear to only depend on the presynaptic terminal, and are all thought to relate to
temporary build-up of calcium ions in the presynaptic cytoplasm.

Paired-pulse facilitation

In paired-pulse facilitation, the synaptic response of a single stimulus modifies the response to the next
stimulus by increasing the probability of neurotransmitter release (i.e., increasing p). This probably then
decays back to baseline after a few hundred milliseconds.

A B

° o
_ s 9

= <
100 ms 100 ms

This can be modelled using a simple exponential:

_t
p(t) =po + (pr —po)e

where p, and py are the probabilities before and after facilitation, respectively, and 7y is the
characteristic decay time of facilitation.

Augmentation

Augmentation is a form of short-term synaptic plasticity which also increases the probability of releasing
synaptic vesicles during and after repetitive stimulation. The main difference between paired-pulse
facilitation and augmentation is that augmentation occurs in response to multiple spikes, whereas
paired-pulse facilitation is relevant to spikes in response to a single stimulus.

Augmentation can be modelled using a similar exponential equation:

t
p(t) =po + (pg —Ppole e

Post-tetanic potentiation



Post-tetanic potentiation occurs following a tetanic stimulus, which is a brief high-frequency stimulus. It
is essentially the same as augmentation, except that it only occurs following a very high frequency
stimulus, and tends to have a much longer time constant.

It too is modelled using an exponential equation:

t
p(t) = po + (Pprp — Do)e TPTP

Paired-pulse depression

This temporary reduction in the synaptic strength following presynaptic activity is thought to be due to

the depletion in presynaptic vesicles.

Long-Term Synaptic Plasticity
Apart from lasting for much longer, long-term plasticity usually depends on both presynaptic and

postsynaptic activity. These forms also appear to require protein synthesis.

Long-term potentiation

Long-term potentiation (LTP) is a rapid and sustained increase in synaptic strength following a brief but
potent stimulus. LTP can last for hours, days, weeks or longer. Interest in LTP is in part due to it
providing a possible model for learning and memory.

LTP is known to occur following simultaneous presynaptic neurotransmitter release and postsynaptic
polarisation. It is thought to be mediated by NMDA receptors, which are directly gated by both
membrane voltage and neurotransmitters, meaning that they pass current only when the membrane is
depolarised sufficiently to relieve a block by magnesium ions.

0.4,

F LTP
+ ;
0.3 ﬁ!ﬂé’ﬂfﬂ. LTD < potentiated level

b
. 2 o depressed, partially
ﬁ.ﬁ' (_depotentiated level

field potential amplitude (mV)

0'2'-#:’3 < control level
0.14 1s 10 min
100Hz 2Hz
0

0 10 20 30 40
time (min)
Long-term depression

Long-term depression is induced in a similar way to LTP. Some forms require NMDA receptor activation.
Whether LTD or LTP is induced depends on a threshold of free intracellular calcium concentration.
Above the threshold, LTP is induced, whereas below the threshold, LTD is induced.

Spike-timing dependent plasticity



This process adjusts the connection strengths based on the relative timing of a particular neuron's
output and input action potentials. If an input spike to a neuron tends, on average, to occur immediately
before that neuron's output spike, then that input is made somewhat stronger. If an input spike tends,
on average, to occur immediately after an output spike, then that input is made somewhat weaker.
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Spike timing (ms)
Activity-Dependent Synaptic Scaling

Activity-dependent synaptic scaling (ADSS) is a homeostatic mechanism in which the brain responds to
chronically elevated activity in a neural circuit with negative feedback, allowing individual neurons to
reduce their overall action potential firing rate. ADSS is a postsynaptic mechanism and does not seem to
depend on presynaptic spike activity. Instead, it modifies each synapse by the same multiplicative
factor, thereby preserving the relative weights.

Lecture 13

Hebbian Learning
Table for forms of Hebbian learning:

Rule Equation Effects
Basic Hebb rule dw - Unstable. Projects output vector parallel to
Ty —— = (vii) o ; )
dt principal eigenvector of the correlation

matrix of input.

Covariance rule Unstable. Projects output vector parallel to
principal eigenvector of the covariance

matrix of input.

v _ o
T = (v = 6,))

Oja’s rule dw - 2 Stable. Local multiplicative normalisation
Ty —— = (vil) — av°w .
dt form of basic Hebb rule.




Subtractive dw v Stable. Non-local subtractive normalisation

normalisation Tw dt = (vt} - N (- )7 form of basic Hebb rule.

u

The Hebbian learning rule is a local and cooperate learning rule, meaning that pre- and postsynaptic
neurons must both be simultaneously active for a synaptic change to occur, and that information for
synaptic changes is only information locally available to the synapse. Hebb’s rule can be written
mathematically as:

AWL']' = 'Ui'l]j

Pre-synaptic Post-synaptic
neuron j ‘ neuron i

The postsynaptic activity v of a single firing-rate neuron is described using the equation:

d N

v

T,——=-v+ E Wil

Td_[ - [ a4
L=

Here N is the number of presynaptic neurons and w; is the weight between neuron i and the
postsynaptic neuron.

To simplify the analysis, we can make the adiabatic assumptions:

1. The process of synaptic plasticity is much slower than the firing-rate dynamics of the model.
2. Stimuli are presented slowly enough to allow the network to obtain its steady-state.

This leads us to set the time derivative to zero, hence yielding the steady-state equation:
v=w-1i
With this setup, the Hebbian learning rule can be expressed as:

dw

Tw g = (vit)

Here t,, is the time constant that controls the rate of synaptic change. Given this equation, the
expression vii may be interpreted as a measure of the probability that the pre- and postsynaptic
neurons both fire spikes during a short time interval.

To understand the process, we can take the average over the set of input patterns, and also substitute
the expression above for the output v = W - #i to find (using this property):

dw o
Tw dr (vit)
dw
— =((Ww"w)a)


https://en.wikipedia.org/wiki/Outer_product#Contrast_with_Euclidean_inner_product

AW T
0 o = @@ D)
W _ @)
w = (@@'w
W _ v
Ty = (@)W
v

Here Q is the input correlation matrix.

Stability of Hebbian Learning
To find the derivative of the magnitude of the weights, we differentiate as follows:

d(w-w) diw) _ _ d@w)
Tw i =Ty a -w+Tww-—dT
d|w|? aw)
war o “twrgr VY
dlw|? .
w o =2(vit) -
d|w|? o
Ty I = 2v(ii - W)
d|w|?
T ldrl = 2v?

Notice that this is always positive, meaning that the magnitude of the weight vector continuously grows.
To avoid this, we need to impose bounds on the weights.

Learning Dynamics
To consider the learning dynamics of the Hebbian learning equation, define the eigenvectors e, of Q:

Since the eigenvectors form a complete basis for the activity space, any weight vector can be
represented as a weighted sum of eigenvectors:

N

W) = ) 608,

u=1

Substituting this into the weight update equation we have:

dw _
W = Q¥
N N
d N N
TW%Z cu(t)e, =Q Z cu(t)é,
M:l M=1
N N
d N N
TW%Z cu(®)e, = Z cu(t)Q€,
M:l M=1



N
=1

N
d N N
TW&Z cu(®)é, = Z cu()A,€,
u=1 I
Hence for each eigenvalue u:

d t—/l" t
acu()_acu()

Ay
cu(t) = ¢, (0) exp <T— t>

w

The weights then become:

N

~ ~ ~ /1/1 o

w(t) = Z(W(O) . eﬂ) exp|—t]é,

7'-W
u=1

The exponential term grows over time because the eigenvalues are all non-negative. For large t, the
term with the largest eigenvalue becomes much larger than any of the other terms and dominates the
sum for w. The corresponding eigenvector é; is called the principal eigenvector. As such, after training
the response to (most) arbitrary input vectors is well-approximated by:

voé i

Hence, we can regard Hebbian plasticity as performing a projection of the input vector onto the
principal eigenvector of the correlation matrix of the inputs used during training.

Linear Hebbian plasticity

dw= Xy Xy, W w4+ dw
(dw) = (xxT)w
C=(xx")
= (dw) =Cw

The trajectories of training are shown in the diagram below. For the initial weight combinations below
the dotted lines, the weights tend to the corners. Within the dotted lines, it converges to the top corner.
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Here the final state does not converge to being parallel with the principal eigenvector, as the weights hit
the saturation boundary first.

Oja’s Rule
Oja’s rule is a modification of the Hebb rule that provides stability and only requires information that is
local to the modified synapse. However, it is based on theoretical arguments and not experimental data.

aw _ o s
Ty = Vi~ avtw

As before, we can consider how the magnitude of the weights change over time:

dwl>  d(W) . d(w)
whgr T twige WY
d|w|? N 2oy e e 2
Tw ir = (vii — av*W) - w + w - (vil — av*w)
d|w|? . 2oy
Tw?=2(vu—av w) - w
d|w|? L 2
Ty It =2l - W — av-w - W)
d|w|? .
gy = 2(v? — av?|W|?)
d|w|? .
gy = 2v%(1 — a|w|?)

We can find the steady state by setting the derivative to zero:
0 =2v%2(1 — a|w|?)
0=1-a|w|?

W2 =

|w|* =~
a

Hence, we see that weights do not grow without bound.



Lecture 14

Multiplicative Normalisation

Activity Dependent Synaptic Scaling (ADSS) is a mechanism that adjusts the synaptic weights during
learning to regulate postsynaptic activity. Synaptic scaling involves neurons detecting changes in their
own firing rates through a set of calcium-dependent sensors that regulate the number of glutamate
receptors on the cell membrane. Higher levels of activity lead to higher calcium concentrations, leading
to scaling down of the number of glutamate receptors and hence a reduction in activity. The reverse
occurs with low levels of activity.

HHHHH

[Cali
Scaling Scaling
down up

up

Scaling
down

[Cali

The postsynaptic activity of a cell can be represented by a slowly varying metric a(t):

O z 5t —t)

dt

In multiplicative ADSS, the weights are updated by a common factor f3:

dw(t)
dt

= pw(t) [agoal - a(t)]

While Hebbian plasticity mechanisms modify neural synaptic connections selectively, synaptic scaling
normalizes all neural synaptic connections by decreasing the strength of each synapse by the same
factor (multiplicative change), so that the relative synaptic weighting of each synapse is preserved. Oja’s
rule is a form of multiplicative normalisation.
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Subtractive Normalisation

Hebbian learning can be made stable by applying subtractive normalisation, where the same amount is
subtracted from all weights regardless of their magnitude. This is a non-local operation, as it requires
that the sum of all input activity be available to each individual synapse.

The modified Hebbian update rule takes the form:

dw 5 v(~ N
Ty—— =Vl —— (fi- W)l
Y odt N,

Where i is an N, -dimensional vector with all components equal to 1.

Subtractive normalisation must be augmented by a saturation constraint to prevent weights from
becoming negative.

Ocular Dominance

Ocular dominance refers to the phenomenon where neurons in V1 tend to respond primarily to neurons
from one eye over the other. We can understand ocular dominance as a manifestation of subtractive
normalisation.

Consider a single neuron in V1 which receives two inputs from the LGN, one associated with the right
eye with activity ug and the other associated with the left eye with activity u;. The output of the V1
neuron is then given by:

v = WgrUg + wru,,

The input correlation matrix is given by:

Q =(u-1u)
_ (ugug) (uRuL>]
(upug) (ugup)

=lgy 4]



To solve for the equilibrium behaviour of the network after Hebbian learning, we need to find the

eigenvalues and eigenvectors of this matrix.
To find the eigenvalues:

qs—A  dp —0

dp s — A
0=(qs—D*-q3
0=q§—2qsA+2*—q}
0=2%—2qsA+ (% — qp)
0= (/1+(QS+QD))(/1+(QS—QD))
A =qs +qp, A2 =qs—qp

To find the eigenvectors:

Qé; = 418 Qé; = 1,8,
Q—-12)é =0 (Q—-12)é, =0
—qp CID] er] _ [0] dp cID] es| _ [0]
9o  —dpllez| 0 4o qollez| 10
-1 17fef] _ 0 1 17]ez| _ 0
oIl - s oll]= [0
el = e? es = —e?
s oAt a1
s _5[1] A _ﬁ[—l]

Since the input from the two eyes are likely to be correlated, qp > 0, and hence 4, will be the principal
eigenvector. As we saw before, in the long term this means the weight vector will become parallel to the
principal eigenvector. The weights then will become:

R

w

w(t) = (W(0) - &) exp (qS: - t) [ﬂ

w

Hence we see that wg = w;, which does not result in ocular dominance.

Now instead consider what happens when we use the subtractive normalisation rule:

dw v - W)
Ty = Vi N, i )7
diw W
rwd—v:= A, AL
e
- d—‘f — (AW — = WTD)AGET D)
W oW — 2 @) (AT
det—Qw 2wu nn' )i

T @ _ [uRuR uRuL] ~ 1 v [uR + uL]
W dt Upup ULy
dW [uRuR uRuL] ~ 1 [uR] [
T —
W dt Upup  Upuy



T aw [uRuR uRuL] ~ 1 [uRuR + URU;, URUR + u,RuL] ~
wide  lugup  ugy, 2 luguy +ugu;, ugup +ugyg
dw  1ugug —ugu, ugu, — uRuR] N
Ty— =—
Wodt  2lugup —u U, u Uy — Uply
LW _1as—ap QD_QS]W
Wdt 2l9p—qs Qqs—qp
aw 1y —a] —
Ty — =— w
Wat 21

To find the eigenvalues of the matrix we use:

1 2 2
2(G-1 -G) ) =0
2 2
%—M+F—%=O
A2 —al=0
Adl—a)=0

Al =a, /12 =0
Now solving for the eigenvectors we have:

Qé, = 1,&
(Q—14)é; =0

-

_a _a
g4
2
o ol|c3] =10
el = —e?
1
él_ﬁ[—11]

Substituting this into the equation for the weights we find:

W) = (W(0) - &) exp (qs — 4o t) 1]
Tw -1
Note that now the opposite eigenvector to before is growing and becomes dominant. The direction of
growth will depend on the initial condition of the weights. If W(0) - &;is positive, wy increases and w;,
decreases, while if it is negative, then w; increases and wg decreases. Either way, one weight will grow
while the other will approach zero, thereby achieving ocular dominance.

The Covariance Rule
Experimental results indicate that when cells are exposed to high rates of activity sufficient to generate
postsynaptic activity, the synaptic weight is increased. Conversely, when cells are exposed to low rates



of activity that is nonetheless sufficient to generate postsynaptic activity, the synaptic weight is
decreased. These effects are shown in the diagram below.
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We can model these effects using a modification of the standard Hebbian learning rule. The standard
rule has the form:

dw
w E =rvu
There are two possible modifications:
dw
Tw oo = (v —0,)u
dw .
Ty Ir v(u - Hu)

Both involve introduction of a threshold parameter that determines the level of presynaptic or
postsynaptic activity at which LTD becomes LTP. The threshold is usually set to the average presynaptic
or postsynaptic activity over the training data.

Substituting the average presynaptic activity into the parameter of the first rule, we have:

w N
Tw g = ((v —6,)1)
div
Ty —— = (@ - W — (@i - W)) &)
drt
div
Tw g = ((@ — (1)) - wit)
T
div
Ty —— = ((@ — (@)W’ &)
drt
div
Ty — = (@ — @)a’")w
dt
rw P _ (@im) - (@)W
drt
div

= (@ — (@)@ — @)N")w

twiliar



dw
TWE: Cw

Where Cis the input correlation matrix. Thus, covariance learning produces weight vectors which are
parallel to the principal eigenvector of the covariance matrix, instead of the correlation matrix as for the
standard Hebbian learning. This is shown in the diagram below.

ar

F

Uy T
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Note that the covariance learning rule is still unstable, as the weight magnitude changes as:

LB @) G
Yodr Y odr w dr
=w—@W)Hi-w+w-(v—(v)i
=w—(@Ha-w+ @w—(w)i-w
=2 —(v)v

d|wl|?
w g = 2v(v — (v))

We see that the magnitude of weights increases so long as activities are non-zero.

Lecture 15

Spike-Timing Dependent Plasticity

In Hebbian learning, a synapse is strengthened if pre- and postsynaptic neurons are simultaneously
active. However when we consider spiking models, we need to consider the relative timing of spikes in
addition to the overall rate. This leads to the idea of Spike-Timing Dependent Plasticity (STDP), in which
the timing of the presynaptic relative to the postsynaptic spike determines the change in synaptic
weight. Experimental data for this effect is shown below.
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STDP Learning Rule

The most general equation for the weight changes up to the quadratic level is:
AWU = Cijvivj + Ciiviz + ijvjz + bivi + ij] +a
Where v; is the presynaptic activity rate, v; is the postsynaptic activity rate, and ¢, b, a are constants.

The change in weight after an experiment of duration T is then given by:

T (T T T T
AWij = —[ —[ CijSi(t)Sj(t’) dtdt’ + f biSi(t) dt + f bjSJ(t') dt' + f adt
0 J0 0 0 0

In setting a value for ¢;;, we assume that a change in synaptic weights only occurs if both spikes occur
within some time interval:
lt: — ¢ <s

We then define a window function c;; = W (s) that determines how the synaptic weight changes as a

function of s. The shape of W defines how the synaptic change depends on the time difference.

Substituting in this function for ¢;; and dividing through by T we have:

Awy _ 1 j ' j Wit - 508 ¢y dede’ + 2 f sydet 2 f s yde +
T Tl . T ™ Ty~ ¢
AWij 1 T T-t' bi T b] r
—Y = —f W (s)Si(s + t)S;(t") ds dt’ + —f S;(t) dt + —f St dt' +a
T T), ). T), T),

ldeW”(t)dt 1fT WS+ 95,0 d dt+bifTS ‘ dt+bjfTS £ dt +
T), dt _To -, (s)Si( S)j()S Toi() Toj() a
If T > s, we can replace the upper integral terminal with T. Then extending the integral out to infinity
and negative infinity, which is valid since far outside the window (in the negative direction in particular)
no weight changes will occur anyway, we can write:



LTy ® 1" T_t’W sc+os@dsdar+2 [ sode+ 2 [ 5@ e+
Tfo L _?f_oo } ()Si(t +5)S;(D) ds 7]; i(©) 7f0 i () a

d [oe)
(E wyj (t)> - f_ W(s)(Si(t + 5)S,(8)) ds + bi(Si(©) + b;{S; (D)) + a

We see that learning is driven now by temporal correlations in the spiking times of the presynaptic and
postsynaptic neurons.

Sound Localisation

Barn owls can use interaural time differences (ITDs) for sound source localisation to locate prey even in
complete darkness. By this method, they can localise sound to within 1-2 degrees, which corresponds to
temporal arrival differences between the ears of less then 5us. This capability is not innate, but learned
by connections being strengthened and pruned during development.
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At each ear, sounds are separated into their frequency components through phase locking. This is
facilitated by unusually low membrane time constants of the neurons involved, around 7 = 0.1ms
compared to more typical values of T = 10ms. Signals are then passed through the nucleus
magnocellularis (NM) to the nuclear laminaris (NL), where interaural time differences are computed,
which for a simple sinusoidal signal will be equal to the phase difference.
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A neural model of this process has been developed by Gerstner et al, based on an integrate-and-fire
neuron with exponential current input as a function of input spikes from j input neurons, which in turn
are generated from a Poisson process with sinusoidal firing rate. The resulting input can be
approximated by a sum of Gaussians. The model then consists of the following equations:

u
TmE=—u+Rl(t)

w; 1 t—t;
R SRR
© ~ R/t n Tsexp Ts ( ])

J J

tj ~ Po(sin(at))

This model adjusted weights using STDP, and was able to learn synaptic weights that are sensitive to the
periodic structure of the input. This is shown below, with the weights plotted against the interaural time
difference before (top), during (middle), and after learning (bottom).The dashes lines on the right show
that after learning, the neurons have the highest response rate when the time difference is zero, and
lowest when it is equal to have a period. Thus they serve as a coincidence detector.
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Additive vs Multiplicative STDP

STDP is competitive, since changing the strength of one synapse will shift spike timing of the
corresponding neuron, which would then affect the synaptic strengths of the other synapses. Additive
STDP tends to result in a bimodal distribution of synaptic weights, with weights driven to the extremes.

P(w)

0 w
Synaptic weight, w

max



In Additive STDP, correlated groups of synapses tend to drive the output, and therefore tend to
potentiate one another in comparison to uncorrelated groups of synapses. An alternative model is
multiplicative STDP. The difference between additive and multiplicative STDP are shown in the

equations below:

Aw, = cexp(— 6t/1)
Awy = cw exp(— 6t /1)

The multiplicative term results in a balancing of synapses, so that strong synapses are weakened, and
weak synapses are strengthened. Because of this effect, neurons trained using multiplicative STDP tend

to form a unimodal weight distribution.

Weak synapses Strong synapses
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This form of learning produces weight distributions like those observed experimentally. It is also stable
without a need to set a maximum weight value. Competition can be reintroduced using a mechanism

such as activity-dependent synaptic scaling.
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Lecture 16

Calcium Model of STDP

Biophysical models focus on the underlying mechanisms involved in producing an observed
phenomenon. They are distinct from phenomenological models (e.g., STDP), which simply try to
describe the observed phenomenon. Most of these are based on the role of calcium.



In this model, there is a spike in calcium whenever there is a presynaptic or postsynaptic action
potential, but the spike is larger in the case of a postsynaptic action potential. In either case, the calcium
concentration then decays exponentially. What matters in this model is the proportion of time that the
cell is above the calcium threshold for potentiation (a,, threshold shown in dotted orange), compared
to the proportion of the time it is above the calcium threshold for depression (a4, threshold shown in
dotted green). As shown in the bottom graph, a is relatively higher when the postsynaptic spike occurs
before the presynaptic spike (because the large first spike bumps up the second to be in the depression
range), while a,, is relatively higher in the reverse case (because the small first spike does nothing
except raise up the second spike so it spends longer above the potentiation threshold). This leads to
depression when the postsynaptic spike occurs first, and potentiation when the postsynaptic spike
occurs second. Note that there is a delay D between a presynaptic spike and the onset of the
corresponding calcium spike, but no such delay in the case of a postynaptic spike.
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The calcium dynamics c(t) are given by the equation:
dc c
=7t CpreZ5(t —t;—D)+ CpostZS(t —t)
i j
There t; are times of presynaptic spikes and t; are times of postsynaptic spikes. This calcium behaviour

gives rise to the values a, and aq, which are the fractions of time the calcium transient is above the
potentiating and depressing thresholds 6,., calculated over total stimulation time T as:

1 T
a, = ?J;) H(c(t) —0,)dt

The behaviour of the synaptic efficiency p is then modelled by the equation:

d
‘ Z(tt) = ap¥p(1 = p(®) — aavap(®) + V1 [, + aqz(t)

Where z(t) is a Gaussian noise term with standard deviation ¢ and zero mean.



To find the long-term equilibrium for a given set of spikes p, we ignore the noise term and set the
derivative to zero:

ap]/p(l - p_) = ad]/dp_
ApVp — ap]/pp_ = ag¥ap
apYp = Qqyap + apypp_

ApYp = p_(adyd + apyp)
_ ApYp

B XgVa + apyp

The effect of varying the a parameters is shown in the figure below (note that p is on a different scale to
the axis on the left).
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Note that STDP is still a simplification, as it does not incorporate effects such as:

Fire rate dependence
Spike-triplets and spike-quadruplets
Bursts

el

Dendritic location dependence

Unsupervised Learning

Unsupervised learning is a type of Hebbian learning that finds previously unknown patterns in a data set
(without requiring pre-existing labels). It usually performs principal component analysis (or similar)
through an algorithm that involves variance maximisation.

Supervised Learning

Supervised learning involves presenting labelled data to a network, which then learns weights in
accordance with a mechanism that optimises some predefined error function. Effectively this involves
learning to approximate some function g of the input X with a parameterised approximation function
G (W, X). The approximation algorithm then attempts to find the optimal weights W* that reduce the
error until it is below some threshold €, relative to some norm |-|. This is represented as:



GW", %) —gX)| <€
In neural network applications, the following parameterisations are often made:

e The approximation function G is often sigmoidal.
e The norm || is often Euclidean.
e The search algorithm for W™ is typically some form of gradient descent.

For supervised learning, the approximation function needs to provide for universality, the ability of
G (W, X) to represent g(x) accurately; and generalisation, the ability of G (i, X¥) to correctly map new
points not seen during the learning process.

Reinforcement Learning

Reinforcement learning involves interacting with an environment to receive a learning signal, which
then drives learning. Not only animal behaviours can be reinforced, but even individual neurons can be
reinforced to yield increased firing rates (see example experimental data below).
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Reward-Modulated STDP
Spike time dependent plasticity in its ordinary form is an unsupervised form of learning, as synaptic
changes are not based on any teaching or reward signal. As such, it would have to be modified to be
used for reinforcement learning. To achieve this we need a way of solving the ‘credit assignment
problem’, which is how to preserve a memory of the stimulus so that by the time a reward signal is
received, the change in network weights can be conditioned on the stimulus.

One solution is to use a mechanism called eligibility traces. In this mechanism, the eligibility function
integrates signals from the presynaptic and postsynaptic spikes, and then computes the changes in
weights by multiplying the eligibility trace by the reward signal:

Aw=eXxy
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This mechanism can even generate anti-Hebbian learning when the reward signal is negative.
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Reward signals are often carried by dopamine (DA), which functions as both a neurotransmitter and also
a neuromodulator. Neurons of the ventral tegmental area (VTA) and substantia nigra respond to
rewarding stimuli, projecting dopamine to many other brain regions. As shown below, this can positively
modulate the extent of STDP.
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We can explain the flip in the sign of the STD depression shown in the diagram above (in the presence of
dopamine (DA)) if we introduce two separate eligibility traces, one for depression and one for
potentiation.
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Ear Anatomy

The ear is comprised of an outer, middle, and inner ear. The outer ear consists of the pinna, auditory
canal, and tympanic membrane, which separates outer and middle ear. The middle ear consists of three
small bones (called the malleus (hammer), incus (anvil) and stapes (stirrup)), which transmit vibrations
from the tympanic membrane to the oval window (also called the ear drum). The inner ear consists of
fluid filled chambers including semicircular canals (equilibrium) and cochlea (hearing). Within the
cochlea is the organ of corti, which is responsible for the sound transduction process.
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Higher frequency sounds are detected near the beast of the basilar membrane, while low frequency
sounds are detected near its apex. This is a form of spatial coding.
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This tonotopic mapping is maintained throughout the auditory pathways.
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Hair Cells

Hair cells are embedded in the basilar membrane and project small cilia into the overlying tectorial
membrane. When sound vibrates the perilymph in the scala vestbuli and scala tympani, the basilar
membrane vibrates relative to the tectorial membrane. This causes the cilia of the hair cells to move
relative to each other, opening mechanically gated ion channels. This depolarises the membrane, which
then triggers the opening of voltage or calcium gated channels, further depolarising the membrane. If
threshold is reached, neurotransmitter is released, triggering action potentials in efferent neurons.
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At lower frequencies, the response of hair cells is phase locked to the input stimulus. This becomes
impossible at high frequencies owing to the membrane time constant.

Spikes

Time
Stimulus waveform (0.3 kHz)
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Eye Anatomy

Vertebrate eyes consist of: the sclera, tough white outer connective tissue; the cornea, a clear part of
sclera in the front of the eye which allows the light in and acts as a fixed lens; the iris, a pigmented inner
layer that can change size to regulate the amount of light coming in; the lens itself; the retina, where the
photoreceptors are located at the back of the eye; aqueous humour, a fluid that fills the anterior cavity;
and vitreous humour, a jellylike fluid that fills the posterior chamber.
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Photoreceptors

The photoreceptors lining the retina consist of rods and cones. Each has stacks of membrane discs
containing rhodopsin (a vitamin A derivative + opsin). These are activated and cause sensory
transduction in response to incident photons.
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Cell type Location

Description

Centre-surround cells | RGC and LGN

Concentric circles where the stimulus is excitatory
and inhibitory respectively.

Simple cells V1

Responds primarily to oriented edges and gratings
(bars of particular orientations), in a particular
location in visual field.

Complex cells V1/V2

Responds primarily to oriented edges and gratings,
regardless of exact location in visual field. Some
respond optimally only to movement in a certain
direction.

Hyper-complex cells V2/V+

Responds to oriented edges and gratings regardless
of exact location, but also sensitive to the length of
the lines. This is called edge-stopping.




The visual system consists of two main pathways: ventral (‘what’) and dorsal (‘where’).
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Introduction to EEG

Electroencephalography (EEG) measures the time evolution of the electric potential (voltage) generated
by the brain. EEG can be measured on the scape, on the surface of the cortex, or in deeper parts of the
brain. The electrode size must vary in accordance with the location of the electrodes.

Conductive contact Conductive contacts Conductive contacts

iy T mamm
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Scalp Subdural Depth
Electrode Electrode Electrode

There are many layers of insulation between the electrodes and the neural tissue.
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A number of different waveform patterns have been identified in EEG:

e Delta: less than 3 Hz. Dominant rhythm in infants and in stages 3 and 4 of sleep.
e Theta: 3.5 7.5 Hz. Slow activity.

e Alpha: 7.5 - 13 Hz. Appears when closing the eyes and relaxing.

e Beta: 14 — 20 Hz. Fast activity. Dominant rhythm when eyes are open.

e Gamma: 20-100 Hz. Faster activity.

| theta | delta | alpha | beta
1 sec | 50 pV
—_—
Gamma
Problem solving,
concentration
0.0 0.2 0.4 06 0.8 1.0
Beta
Busy, active mind
0.0 0.2 0.4 06 08 1.0
Alpha N\/\W
Reflective, restful
0.0 0.2 04 0.6 0.8 1.0
Theta W/W\
Drowsiness
0.0 0.2 0.4 0.6 0.8 1.0
Delta r\/\/\/
Sleep, dreaming g 02 04 06 08 1.0

Several sources of noise make interpretation of EEG difficult. These include eye blinking, chewing, and
movement of the electrical leads.
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Modelling the Electric Potential
In biology, current is transmitted by ions rather than electrons. Most of these currents flow within the

dendrites or axon of the cell as in action potential transmission, however since cell membranes are
highly resistive, intracellular currents do not contribute to the EEG. Instead, brain electric fields are
generated by chemical currents of charged ions flowing outside the cell.
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The electric field generated by a particle of charge g at location 15 is:

E(r) = m i
The electric potential of a single charge is:
00) = 3l
The electric potential generated by N charges is:
) N ! N 0
() = ;cpw) = ey 2

If there are only two charges, this equation simplifies to that of a dipole:

q dcos(6)
4me, R?

¢(r) =
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Origin

Because the measurement of EEG is far from the sources, a volume containing many charges can be
approximated by a single dipole, provided there is roughly an equal number of positive and negative
ions within it. This is known as an equivalent dipole and is useful in approximating the activity in small
volumes of the brain. However, for equivalent electric dipoles we still need to know a rough distribution
of all charges in the brain, so instead we use a current dipole, with current sources and sinks instead of
positive and negative charges. The equation for a current dipole is:

d,0) Id cos(6)
¢, " 4mo R?

The net electrical potential at r generated by many small volumes is then approximated by the sume of
the equivalent dipole representing each small volume:

Id; cos(6;)

Gror(r) = ' %TG(dpeiﬂ‘)
L

Here G(d;, 0;,7) or G(r5, 1) is the Green’s function, and describes the effects of the material between
the source 75 and the recording location .

Interpreting EEG Signals

Because the human head is not spherical and is inhomogeneous, the true Green’s function is very
complex, and must take into account both the different materials in the brain, but also the boundaries
between them.

To deal with this complexity approximations are needed. In the brain, the neurons in the cortex are
aligned and often large areas are activated together, meaning that potentials in the cortex are much
more influential to the EEG than those in deeper structures. Hence, an appropriate simplification is to
consider a sheet of dipoles rather than a volume.

EEG




Using this model, simulations show that the measured voltages are affected by large areas of cortex.
EEG is thus an ambiguous measurement, in that the same EEG signal can be generated by many

different patterns or regions of brain activity.

Scalp EEG Cortical EEG
10-20cm? 4-5mm?
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Neural Mass Models
Neural mass models describe macro-columns using only one or two state variables to represent the
mean activity of the whole population of neurons. This procedure, sometimes referred to as a mean-

field approximation, is very efficient for determining the steady-state behaviour of neuronal systems. It

is often used to model alpha rhythms.

Mass models consist of two main components: a neural output function f(v), which describes the firing
rate of a neuron as a function of its membrane potential v; and a synaptic kernel h(t), which describes
the membrane potential as a function of time after threshold v, has been reached.

weighted mean
input membrane
firing rate potential
f‘lll(l.l' k
\é 0
=
0 0 t (s) 1

vo

v(r',t)

wave to pulse pulse to wave

Working backwards, the output firing rate of cell two g, (t) is determined by the sigmoid output
function f(v):

g2(t) = f(vz(t))

The postsynaptic potential of cell two, v, (t), is in turn determined by convolving the synaptic kernel cell
h(t) with the firing rate of neuron one g, (t):

t

23(8) = h(t) * g1 (8) = j Rt — ) gy (t) dt’



Many different synaptic kernel functions can be used:

h(t) = H(OW exp (—g)

h(t) = H(t)Wgexp (— ;)

h(t) = H(t) Tzvftl [exp (— T—tl) — exp (‘%)]

A common form for the firing rate function is:

_ fmax
f(vl(t)) - 1+ exp (a(vo - v(t)))

Green’s Function Methods

These equations can be combined into a single differential equation by taking advantage of the
properties of Green’s functions. Suppose we have a linear differential operator D and an equation of the
form:

Dv(x) = f(x)
A Green’s function of D is a function G(x, x") such that:
DG(x,x") =6(x" —x)

In words, G (x, x") describes the impulse response of the differential operator D. It turns out that
function G (x, x") for D is all we need to solve the original equation. To see this, multiply by f(x") and
then integrate both sides:

jDG(x,x')f(x’) dx' = f S(x' —x)f(x")dx'
D f GO, x")f(x")dx" = f(x)

Where the second lines follows because D is linear and operates only on x, not x’. Now all we need to
do is observe that:

v(x) = f G, x")f(x")dx'
And we have a solution to the original equation:

Dv(x) = f(x)

In the case of the neural mass model, we have the following equation:

() = f_ ; H(t)At exp (— ;) g(t") dt’

It turns out that we can rewrite this as a differential equation as follows. First, take derivatives of h(t).



h) = HAtexp -7

B = HOAexp (— - ho

W) = A5(0) ~ ZHOAexp (1) - —H(t)A exp (~2) + —5h(0)
— A8() — %H(t)A exp (— —) +=h(0)

. . . . a2  2d 1
Now consider the linear differential operator D = — +-—+ =:
dt?  tdt 12

2 01 2 N 1
Dh(t) = <A6(t) - ZH@Aexp (— ;) + T—Zh(t)> += (H(t)A exp (— ;) - ;h(t)) + (T—Z)
1 2 1
= A8(t) + T_Zh(t) - T_Zh(t) + ‘[_2
Dh(t) = A8(t)

Hence we have established that h(t) is a Green’s function of D. Now let us apply the same process as
above to find the full equation:

DG(x,x") =6(x" —x)
fDG(x,x’)f(x’) dx' = f S(x' —x)f(x")dx'
DfG(x,x’)f(x’) dx' = f(x)

Substitute in the relevant functions in the present case:

fH(t)Atexp(——) ) dt’ = Ag(t)

Where we our solution:

v(t) = f_ ; H(£)At exp (— g) gt dt’

Thus we can write the differential equation:

@ t 2d t ! t) =Ag(t
W”()"‘;av()'i'r—zv()— g()

Modelling a Cortical Column

These methods can be applied to model a cortical column. In such models, functionally equivalent
neurons are lumped together into a single node. The behaviour of the resulting circuitry should be
prototypical for individual units in the underlying neural network.
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In one canonical circuit model, there is one excitatory neuron, one inhibitory neuron, and one excitatory

pyramidal neuron.

fe(t)

Parameters in these models include the time constants, synaptic gains, maximum firing rate, and
connection weights. These are derived from experimental data from rodents, monkeys, and cats.

EEG Generation

The value of neural mass models can be analysed by studying how parameters affect the simulated EEG
and comparing to experimentally recorded EEGs. Such comparisons have found that altering the time
constants reproduces oscillation patterns analogous to those found in various EEG waveforms.

T (Ms) " Time(s)



The parameters of EEG models can be learned from dynamic data feeds using a technique called Kalman
filtering. Kalman filters work by comparing the predicted state variables from a stochastic model of a
dynamical system, and then updating these predictions based on the observed values that are made in
that period.
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. } /
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k|k Y
to measurements .

|

Output estimate
of state

Basic neural mass models can be extended by coupling multiple such models together as input-output
pairs.
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(inhibitory interneurons)

David et al. 2005

Neural Interfaces
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Electrical Stimulation
Stimulating electrodes causes currents of ions to flow in tissue. This elicits action potentials in
surrounding neurons.
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Different forms of stimulation can be used, but typically charge-balanced biphasic phases are used,
where both phases are symmetric so as to ensure no net charge enters or leaves the tissue. Interphases
gaps or chopped phases can be devised to allow the charge to persist for longer.
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The membrane properties of neural tissue can be measured by constructing a strength-duration curve,
in which the pulse duration is plotted against the minimum current needed to elicit action potentials,
and typically is a hyperbolic shape. The Rheobase current is the threshold current level as pulse duration
approaches infinity, while the Chronaxie is the pulse width at a current level twice rheobase.
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e Anincrease in the pulse rate will increase the stimulation of the excitable tissue.

e Each individual nerve (or muscle fibre) has an upper limit on the rate at which it can respond,
due to refractory effects.

e However, other (more distant) nerves or fibres will respond as the pulse rate increases.

e The response of the population of fibres tens to lose synchronisation as the pulse rate increases.

Pulse amplitude

e Anincrease in the pulse amplitude will increase the stimulation of the excitable tissue.

e With larger amplitude the current will spread more broadly thus exciting more (distant) nerves.

¢ In general the current amplitude will be set to remain between the threshold of activation and
some upper bound (often called the maximum comfortable level).

Pulse duration

e Anincrease in the pulse duration lowers the threshold of activation of nerve fibres.
e The same level of stimulation can be achieved by using shorter pulses with higher amplitude or
longer pulses with lower amplitude.

Parkinson’s Disease

Deep brain stimulation can be used to treat the symptoms of Parkins’s disease. The targets of this
stimulation are the subthalamic nuclei and globus pallidus, all targets of the dopaminergic system. Deep
brain stimulation involves the implantation of a neurostimulator, which sends electrical impulses to
specific parts of the brain. It is recommended for people who have motor fluctuations and tremor
inadequately controlled by medication, or to those who are intolerant to medication.
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Thalamus
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The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role
in reward and movement. Parkinson's disease is characterized by the loss of dopaminergic neurons in
the substantia nigra pars compacta.
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Brain-Computer Interfaces

Brain-Computer Interfaces (BCl) or Brain-Machine Interface (BMI) is a technology to communicate
between the human brain directly to a computer without any physical contact. The idea is to bypass
damaged or removed neural connections between a brain region (such as the motor cortex) and the
effectors (such as muscles) by connecting both to an external computer.

N e

N N

There are three main methods of detecting brain activity. The more invasive methods can use smaller
electrodes, and hence there is higher resolution and less noise.

e Electroencephalogram from the scalp (non-invasive), includes EEG, MEG, and fMRI.
e Electrocorticogram from the cortex surface (invasive), includes stentrodes and microarrays.
e Intracortical recordings from electrodes deep in the brain (highly invasive).

from the scalp
non invasive

- Electrocorticogram, ECoG
from the surface of the cortex
invasive

Intracortical recordings
within cortical tissue
invasive

BCls need to measure and interpret neural activity so as to produce useful motor responses. Volitional
changes in oscillatory activity near the sensorimotor cortex, known as sensorimotor rhythms (SMRs),
can be measured, and localised using Common Spatial Patterns (CSPs). This helps to linearly combine
information from multiple EEG electrodes to accentuate SMR activity.
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EEG and MEG

A forward model involves computing the scalp potentials at a finite set of electrode or sensor locations
and orientations (called channel configuration) for a given predefined set of source positions and
orientations (source space). There are four components of a forward model:

1. A head model: need to know how the electric currents generated at the source spread
throughout the volume conductor (head). Typically four-layered concentric circle model is used,
corresponding to the brain, the CSF, the skull, and the scalp.

2. Asensor description: need to know where the sensors are that pick up the activity coming from
the sources.

3. Asource model: need to know where the sources are within the brain.

4. A lead field: for each source we calculate the electric potential vector at each sensor (electrode).

Forward Problem —

— Volume conduction

rHead model

Cortical Surface

Inner Skull

Outer Skull

Finite element method Boundary element method

The inverse problem involves using the forward model to fit parameters of the model against the EEG
data.
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Inverse Problem
Pros and cons of the two techniques:

e MEG is more sensitive to currents tangential to the surface of the scalp, EEG is sensitive to
tangential and radial neuronal activities.

e Magnetic fields are not distorted by the tissue the scalp, skull, cerebrospinal fluid, and brain.

e MEG provides better spatial resolution of source localization (2-3 mm) than EEG (7-10 mm).

e MEG hardware is costlier.

e Patient setup is shorter with MEG compared to traditional EEG.
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Functional magnetic resonance imaging
Increased neural activity leads to a delayed increased provision of bloodflow, as shown in the diagram
below. This is called the BOLD response.

BOLD response to a brief stimulus
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Hemoglobin differs in how it responds to magnetic fields, depending on whether it has a bound oxygen
molecule. Deoxygenated hemoglobin (dHb) is more magnetic (paramagnetic) than oxygenated
hemoglobin (Hb), which is virtually resistant to magnetism (diamagnetic). Magnetic spins of proton
nuclei are aligned using a strong external magnet, and then a brief RF pulse applied to the field, which
causes the nuclei spins to align in phase. However this is not an equilibrium, so the system will gradually
relax back to a distribution of phases. This relaxation time is called the spin-spin transverse relaxation
time, T .
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This decay occurs more rapidly in dHb compared to Hb because of the former’s greater magnetic
interaction and the resulting larger local field inhomogeneities. Hence, the more oxygen in the tissue,
the more slowly the magnetic signal decays, and hence the larger the BOLD signal.

ABOLD

SIGNAL
Ml

Basal condition

HbFe?*0,

BLOOD FLOW

Enhanced blood flow and blood volume

fMRI is non-invasive and has high spatial resolution, with minimal setup difficulty. However, it is a
measure of metabolic input rather than neural processing directly. It also has poor temporal resolution,
and can be affected by various factors such as drugs, pathology, age, and attention.

Stentrodes and Microarrays

Stentrode (Stent-electrode recording array) is a small stent-mounted electrode array permanently
implanted into a blood vessel in the brain, without the need for open brain surgery. It is in clinical trials
as a brain—computer interface (BCl) for people with paralyzed or missing limbs, who will use their neural
signals or thoughts to control external devices.
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moving signal

A microelectrode array is a more invasive devise implanted on the surface of the brain. It can measure
extracellular potentials from a specific area using its array of electrodes. Significant processing is
required to extract individual action potentials.

Extracellular 03mV o , Utah array
0.04mV 4
LFP+EAP 80 mV
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Standard Methods

A phosphene is the phenomenon of seeing light without light entering the eye. The fundamental idea of
constructing retinal implants is to find a mapping from patterns of electrode activation to patterns of
retinal activation, which will then map into perceptual experiences. As shown in the figure below,
adding more electrodes should increase the resolution, and hence allow sharper depiction of images.
However, this analysis assumes that phosphenes do not to overlap, even at high electrode densities.

Original Images ~100 Electrodes ~700 Electrodes ~2500 Electrodes

Unfortunately this assumption is not accurate. Even with small electrodes, the distance between the
electrodes on the surface of the retina and the retinal ganglion cells behind them, is far more important.



There is a great deal of ‘activity spreading’ from each electrode (red dot) to reginal activation (white
phosphene), so the simple approach of making electrodes smaller won’t work.
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Linear Current Steering

A more sophisticated approach to avoid these limitations is known as current steering. Current steering
involves simultaneous stimulation of several electrodes at once, so as to produce an overall activation
pattern on the retinal ganglion cells that is more useful than one produced by activating electrodes one
at a time. For example, the grid below shows a combination of positive (pink) and negative (red) current
injected into various electrodes, which produce an overall pattern of ganglion activation (black curve)
which is more tightly localised than is possible by activating just a single electrode at the corresponding
location.
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This basic approach can be refined to construct a method in which arbitrary patterns of ganglion
activation can be produced by the right combination of electrode activations. The first step is to define a
forward model, specifying the retinal ganglion activations 7 that result from a given set of electrode
activations §. The matrix W describes all the current spreads for each electrode.
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Now we simply invert the forward model to solve for the required activations needed to produce a
desired target image. Note that in practise the matrix W is seldom invertible, so a pseudo-inverse must
be used instead, via Singular Value Decomposition:

W = PDQT
wt = QD—lpT

Where Q and P contain the orthogonal eigenvectors of WIWT and WTW respectively.
Forward Model: ?_‘) = W§
Inverse Model: § = W_lf*

W 1is the inverse of W
7" is a target retinal activation pattern

Inverse Model |5]|= w1 r*

Dgswgd Retinal & = QD"lPT 2
Activation Pattern

P - retinal pattern Q - electrode pattern
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This approach results in a much superior image quality compared to conventional methods.
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Rectified Current Steering

There is a further aspect to the story, however, since experiments show that only the absolute value of
the electrode current matters, meaning that positive and negative electrode currents both yield the
same activity in retinal ganglion cells. This represents an opportunity to ‘utilise’ high-contrast lines that
are not available in the pure linear model. This approach is called a rectified linear model.

|Ws]
Bo0 0 500
Amplitude (pA)

Whereas before we calculated the activity using # = W, now we use the formula # = |W§|. Previously,
negative currents were only used to attenuate and shape positive current. Now, total negative values of
WS are used to directly create retinal activation. Unfortunatley we now cannot use pseudo-inverse
matrix methods, and must solve for § using numerical methods. This is NP-hard, and is done using
simulated annealing and other techniques.
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Lecture 23

Cochlea Implants

Cochlea implants are beneficial for people with profound sensorineural hearing loss, who do not benefit
from conventional hearing aids. This means that the damage exists at the level of the cochlea or hair
cells, while the auditory pathway from the cochlea to the brain is intact. The technology consists of two
main components: one implanted internally and the other worn externally.

Externally worn components: Implanted surgically:

* Microphone - ) * Receiver (in a drilled
indentation on the
temporal bone)

» Speech Processor
» Power (batteries)
» Electrode Array (inserted

» Transmitter in the cochlea)

The device works as follows. First, sound is detected by microphone and converted into electrical signal,
which is then sent to the speech processor. The input signal is analysed and relevant features are
extracted and encoded. The coded signal is then sent via the transmitting coil, through the skin, to the
receiver as an RF signal. This is to avoid long-term implantations protruding through the skin, which are
very difficult to maintain without infection. The implanted receiver then decodes the RF signal to
determine the electrode number, stimulation level and stimulation rate. This signal is transformed into
the appropriate electrical pulses in the electrode array in the cochlea, which stimulates the nerves inside
the cochlea. The receive also sends telemetry data back to the external unit, for diagnostic and
recording purposes.
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The electrode array is wound into a flexible coil to fit inside the cochlea. It must be strong but inert, with
platinum used for the electrodes. The implanted component must be non-corrosive, totally sealed, and
resistant to mechanical stresses and vibration. This is critical because it typically remains implanted for
the life of the patient, and circuitry will be rendered useless if any conductive fluids seep through. A
magnet on the receiver holds the externally worn coil in place on the patient’s skin and ensures that the
transcutaneous link is reliable and efficient.

Speech Processing

The key bottleneck in the Cochlea design is the signal transmitted from the transmitter to the implanted
receiver. As such, the speech processor must be carefully programmed to extract and send only the
most important components of the recorded sound. The electrical encoding exploits the place
mechanism for coding frequencies, with high frequencies near base of cochlea, and low frequencies at
the more apical portion of cochlea.
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The diagram below summarises some of the key stages of the processing pathway. The signal first goes
through a set of bandpass filters that divide the acoustic waveform into six channels. The envelopes of
the bandpassed waveforms are then detected by rectification and low-pass filtering. Current pulses are
generated with amplitudes proportional to the envelopes of each channel and transmitted to the

electrodes through a radio-frequency link.
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Important calibration tests include:

e T-Levels: the level at which the patient first identifies sound sensations. Determined by passing
the person’s hearing threshold using an ascending method.

e (C-Levels: the maximum stimulation level that doesn’t produce an uncomfortable loudness

sensation for the patient.



Performance

Experience with the cochlea is generally good when implanted later in life after acquired hearing loss.
For congenital deafness, the performance depends on the age of implantation, with earlier ages of
implantation showing the best outcomes. However, years of training are still required to obtain optimal
performance. Performance also depends on the condition of the surviving hair cells, the health of the
auditory neve fibres, and the central auditory neurons.

Speech perception against experience
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