
Computational Behavioural Science 
Bayesian Cognitive Models 

Bayesian Models 

Bayesian models are widely used in cognitive science, especially in studying human methods of 

causal inference and categorisation. These are typically not process models – they don’t try to 

capture the cognitive steps people go through when they solve problems. Instead, they make 

predictions about what sort of judgements people tend to make in particular types of problems. 

Key Bayes formulae 

• Marginalisation: 𝑃(𝑎) = ∑ 𝑃(𝑎, 𝑏)𝑏  

• Conditional probability: 𝑃(𝑎|𝑏) =
𝑃(𝑎,𝑏)

𝑃(𝑏)
 

• Chain rule: 𝑃(𝑎|𝑏)𝑃(𝑏) = 𝑃(𝑎, 𝑏) 

• Baes rule: 𝑃(𝑎|𝑏) =
𝑃(𝑏|𝑎 )𝑃(𝑎)

𝑃(𝑎)
 

Bayesian Concept Formation 

Let 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛} be a set of examples of a concept C. Here we will use numbers drawn from 

the interval [0,100]. This is based on a model of concepts developed by Josh Tenenbaum. 

Let 𝐻 by the Hypothesis space of possible concepts. Here it is all possible subsets of the interval 0 to 

100. In his model, Tenenbaum considers the following hypotheses: 

1. Mathematical properties (24 hypotheses):  

a. Odd, even, square, cube, prime numbers 

b. Multiples of small integers 

c. Powers of small integers  

2. Raw magnitude (5050 hypotheses):  

a. All intervals of integers with endpoints between 1 and 100. 

The total probability assigned to mathematical concepts is λ, while the total probability assigned to 

magnitude concepts is 1 − λ. Within each category of concepts, a uniform prior is used. 

In strong sampling, it is assumed that the data are intentionally generated as positive examples of a 

concept, while in weak sampling, it is assumed that the data are generated without any restrictions. 

 

Some examples of this likelihood are shown below: 



 

When considering a new item 𝑦, we must consider the set of all remaining hypotheses consistent 

with 𝑋 and 𝑦, which we can denote 𝐻𝑦. We then have: 

𝑃(𝑦 ∈ 𝐶|𝑋 ) = ∑ 𝑃(𝑦 ∈ 𝐶, ℎ|𝑋)

ℎ

 

= ∑ 𝑃(𝑦 ∈ 𝐶|ℎ, 𝑋)𝑃(ℎ|𝑋)

ℎ

 

𝑃(𝑦 ∈ 𝐶|𝑋 ) = ∑ 𝑃(𝑦 ∈ 𝐶|ℎ)𝑃(ℎ|𝑋)

ℎ

 

Since 𝑃(𝑦 ∈ 𝐶|ℎ) = 1 if ℎ ∈ 𝐻𝑦 and zero otherwise, we can simplify the above equation to: 

𝑃(𝑦 ∈ 𝐶|𝑋 ) = ∑ 𝑃(ℎ|𝑋)

ℎ∈𝐻𝑦

 

𝑃(𝑦 ∈ 𝐶|𝑋 ) = ∑
𝑃(𝑋|ℎ)𝑃(ℎ)

∑ 𝑃(𝑋|ℎ)𝑃(ℎ′)ℎ′∈𝐻𝑦ℎ∈𝐻𝑦

 

This method is known as hypothesis averaging.  

As shown in the figure below, this method produces very similar generalisations to human subjects. 



 

Bayesian Model Selection 

Using observed data to choose between two probabilistic models that differ in their complexity is 

often called the problem of model selection. Complex hypotheses have more degrees of freedom 

that can be adapted to the data, and can thus always be made to fit the data better. The Bayesian 

method for model selection holds that the model should be chosen that has the maximum posterior 

probability given the data, averaging over all possible parameters of the model. This is computed as: 

𝑝(𝑚|𝑑) = 𝑝(𝑑|𝑚)𝑝(𝑚) 

𝑝(𝑚|𝑑) = ∫ 𝑝(𝑑|𝑚, 𝜃)𝑝(𝜃|𝑚) 𝑑𝜃 × 𝑝(𝑚) 

 



Bayesian Networks 

Standard Bayes Networks 

A Bayesian network specifies a joint probability distribution such that each variable corresponds to a 

node in the network, and an edge connection from node 𝑖 to node 𝑗 means that 𝑋𝑗 is independent of 

all other nodes, conditional on 𝑋𝑖  (and any other parent nodes). Also, each node as a conditional 

probability distribution that specifies how that node depends on the values of only its parent nodes 

𝑃𝑎(𝑋𝑖). Thus we can represent the joint distribution as: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎 (𝑥𝑖))

𝐼

 

Bayesian networks have several advantages: 

• Bayesian networks help modelers define high dimensional distributions. 

• Bayesian networks provide a concise way of representing probability distributions. 

• Bayesian networks are modular and therefore easy to extend. 

• Bayesian networks often support efficient inference. 

 

Note that different Bayes nets can capture the same joint distribution, because a given joint 

distribution can be factorised in different ways. For example: 

𝑃(𝑎, 𝑏) = 𝑃(𝑎|𝑏)𝑃(𝑏) 

𝑃(𝑎, 𝑏) = 𝑃(𝑏|𝑎)𝑃(𝑎) 

Markov Chain Methods 

Markov Chain Monte Carlo (MCMC) simulation is a way to draw samples from a distribution. The 

approach relies on a Markov Chain that specifies transitions between values of x. The Gibbs sampling 

and the Metropolis-Hastings algorithm are two examples of MCMC methods. Gibbs sampling allows 

us to sample from a probability distribution over multiple variables if all we can easily do is sample 

from the conditional distribution of each component on the others. This works as follows: 

1. Choose 𝑋𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖 ). 

2. Take draws from the conditional distributions: 

a. 𝑃(𝑥1
𝑖+1|𝑥2

𝑖 , 𝑥3
𝑖 ) 



b. 𝑃(𝑥2
𝑖+1|𝑥1

𝑖+1, 𝑥3
𝑖 ) 

c. 𝑃(𝑥3
𝑖+1|𝑥1

𝑖+1, 𝑥2
𝑖+1) 

3. Repeat 𝑘 times. 

Ignore the first 𝑛 set of draws as the burn-in and keep the remaining 𝑘 − 𝑛 draws. The result is a set 

of draws from the joint distribution of 𝑋. 

Causal Bayes Networks 

The principal of common cause: 

 

Traditional Bayes nets and other probabilistic theories are incapable of distinguishing between 

observations and interventions because they lack the expressive power to distinguish observational 

and interventional conditional probabilities. Both types are subsumed under the general concept of 

conditional probability. Causal Bayesian networks explicitly represent causal relationships, not just 

probabilistic dependencies. Since the edges have a causal interpretation, we can reason about 

interventions. This is possible because of the introduction of the ‘do’ operator. The ‘do’ operator 

(symbolised below as a hammer) sets the value of a node to some specified value, and cuts any link 

that node has with its parents (because such dependencies are destroyed by the intervention). 

Whereas observations leave the surrounding causal network intact, interventions alter the structure 

of the causal model by rendering the manipulated variable independent of its causes. 

 

For example, the bottom left intervention can be represented as follows: 

𝑃(𝑋, 𝑑𝑜(𝑌 = 1), 𝑍) = 𝑃(𝑍|𝑋)𝑃(𝑋) 



Causal Bayes Networks can predict the way that humans distinguish between merely correlation 

relations and causal relations. An example of such experimental results is shown below. 

 

 

Counterfactual Bayes Networks 

A counterfactual is a unique form of inference in which A->B as interpreted to mean that B would be 

true if A were made true by an intervention. Counterfactuals pose unique problems for models of 

Bayesian inference, since they are typically understood to be ‘non-backtracking, meaning that one 

does not reason backwards from a counterfactual supposition to draw conclusions about the causes 

of the hypothetical situation. For instance, one would not reason “if the meat had been cooked rare, 

then the flame would have been set to low”. Modus ponens fails in such models, since just because 

A is true in the actual world, and if A were set by intervention to be true then B would follow, it 

doesn’t follow that B is true in the actual world. We can accommodate this form of reasoning using a 

type of graph called a functional causal model (FCM). 

In FCMs, all nodes are deterministic except for the exogenous nodes (shown below as single circles). 

Compared to generic causal networks, FCMs are more precise about the underlying causal 

mechanisms. FCMs use a ‘twin network’ structure, with one half corresponding to the actual work, 

and the other half to the counterfactual world. In the figure below, the exogenous nodes 𝑈𝐺  and 𝑈𝐽 

respectively represent whatever underlying mechanisms are responsible for an applicant either 



having good grades or not, and getting a job or not. It is important to understand that once these 

exogenous circular nodes are set, everything else in the network is deterministic. This fits the 

intuition that in the counterfactual world, we should not get ‘another roll of the dice’ for any 

stochastic variable when moving to the counterfactual world. In other words, instantiating a 

counterfactual event is equivalent to an imaginary intervention on a causal model in which all 

variables that are not affected by the intervention are assumed to stay at currently observed levels. 

An intervention in such a network corresponds to cutting the link between one of the exogenous 

nodes (below 𝑈𝐺) and its children in the counterfactual world, and then equating the values of the 

exogenous variables in both worlds. 

 

 

The following table summarises what types of inferences are permissible under different types of 

Bayes nets. 

 



Causation and Categorisation 

Causal Structure Learning 

 

The ΔP Model is a successful and widely used model of causal relationships. In this model the 

inferred strength of causal relationship is: 

∆𝑃 =
𝑁(𝑒+, 𝑐+)

𝑁(𝑒+, 𝑐+) + 𝑁(𝑒−, 𝑐+)
−

𝑁(𝑒+, 𝑐−)

𝑁(𝑒+, 𝑐−) + 𝑁(𝑒−, 𝑐−)
 

An alternative model called causal power is a modification of ∆𝑃: 

𝑝𝑜𝑤𝑒𝑟 =
∆𝑃

1 − 𝑃(𝑒+|𝑐−)
 

Yet another method known as ‘causal support’ uses the relative probability of the data under two 

alternative Bayesian causal networks. 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = log
𝑃(𝑑|𝐺𝑟𝑎𝑝ℎ 1)

𝑃(𝑑|𝐺𝑟𝑎𝑝ℎ 0)
 

 

 

The causal support method provides a very close fit to human judgements in at least one type of 

task, as shown in the figure below. 



 

When making judgements about the spread of a disease through a food chain, humans tend to 

incorporate taxonomic information (shown in right), as well as the distance between nodes (causal 

distance), and an asymmetry between prey versus predator (causal asymmetry).  

 

These results can be very accurately predicted by a Bayesian network with a set disease transmission 

probability. We then enumerate all possible extensions of each predicate (in this case ‘has disease’), 

as shown in the diagram below. 

 



To make inference, we calculate the generalization probability 𝑝(𝑦|𝐷) as equal to the proportion of 

hypotheses consistent with the data 𝐷 that also include 𝑦, where each hypothesis is weighted by its 

prior probability 𝑝(ℎ): 

𝑝(𝑦|𝐷) =
∑ 𝑝(ℎ)𝑦,𝐷∈ℎ

∑ 𝑝(ℎ)𝐷∈ℎ
 

The prior for each hypothesis 𝑝(ℎ) is found by randomly assigning a subset of animals the disease, 

and seeing which other animals in the chain then acquire the disease. The prior probability of any 

hypothesis is equal to the proportion of times it ends up as the correct one (that is, when that 

hypothesis describes the distribution of the predicate in the chain). 

𝑝(ℎ) =
𝑁ℎ

𝑁
 

This model well predicts the judgments made by humans in this task. 

 

Supervised Categorisation 

A concept is a mental representation of a class or individual that deals with what is being 

represented and how that information is typically used. It is common to distinguish between a 

concept and a category. A concept refers to a mentally possessed idea or notion, whereas a cate 

gory refers to a set of entities that are grouped together. A category is something in the world (e.g. 

the set of things that qualify as birds). A concept is something in the head (e.g. the mental 

representation of our knowledge of birds). 

Three proposals about concepts 

1. Rule-based approach: Concepts are rules (e.g. bachelor = unmarried and male). 

2. Prototype models: A concept is a prototype that captures characteristic features. 

3. Exemplar models: A concept is merely a set of stored examples. 



 

A prototypical task is supervised categorisation. In supervised problems the learner observes a data 

set D of labeled examples (𝑥𝑖 , 𝑙𝑖) and must infer the category label 𝑙 for a new object 𝑥𝑛𝑒𝑤. If we 

consider the simple case of two possible categories, the problem can be represented as: 

𝑝(𝑙𝑛𝑒𝑤 = 1|𝑥𝑛𝑒𝑤, 𝐷) = 𝑝(𝑥𝑛𝑒𝑤|𝑙𝑛𝑒𝑤 = 1, 𝐷)𝑝(𝑙𝑛𝑒𝑤 = 1|𝐷) 

The three models of categorisation then provide different rules for determining the likelihood: 

1. Rule-based model: the likelihood is characterized by a rule for category k, and learn this rule 

via Bayesian inference. 

2. Prototype model: the likelihood is a Gaussian distribution, and learn the mean and 

covariance for the distribution. 

3. Exemplar model: use kernel-density estimation to compute the likelihood. 

In some cases, rule-based methods (shown in figure below) are able to predict human performance 

very accurately. This is done by calculating the likelihood component of the above equation through 

summing over all rules 𝑟𝑘 that are consistent with the data 𝐷: 

𝑝(𝑥𝑛𝑒𝑤|𝑙𝑛𝑒𝑤 = 1, 𝐷) = ∑ 𝑝(𝑥𝑛𝑒𝑤|𝑙𝑛𝑒𝑤 = 𝑘, 𝑟𝑘)𝑝(𝑟𝑘|𝐷)

𝑟𝑘

 

 



However, rule-based approaches are limited in their applicability, since many concepts are graded 

and do not admit of any necessary and sufficient sets of rules. Humans also show typicality effects, 

whereby they consistently nominate certain items as better examples of their category than others, 

and take longer to make classification decisions in borderline cases. 

Given these limitations of rule-based methods, much recent work has focused on the competing 

prototype and exemplar models. These are actually variations on a theme, with prototype models 

corresponding to parametric models clustered around a centroid, and the exemplar models 

corresponding to non-parametric kernel density estimation techniques. 

 

According to the generalized context model (GCM) of classification, people represent categories by 

storing individual exemplars in memory, and classify objects based on their similarity to these stored 

exemplars. In GCM the similarity measure is context-sensitive, so the weights can ‘stretch’ the 

psychological space along highly attended, relevant dimensions, and to ‘shrink’ the space along 

unattended irrelevant dimensions. 

A more sophisticated view about categories holds that it is not the similarity between an instance 

and the category that determines the instance’s classification. Rather, it is the fact that our category 

provides a theory that explains phenomena in the world. 

It should be noted that all of these models assume an underlying set of features or dimensions. The 

models don’t explain where these come from, but methods for learning them include neural 

networks, brain imaging, or human labelling of automated clusters of images.  

 



It seems that all of these models are useful in different contexts. Evidence for rule-based categories 

tends to be found with categories that are created from simple rules. Evidence for prototypes tends 

to be found for categories made up of members that are distortions around single prototypes. 

Evidence for exemplar models is strong when categories include exceptional instances that must be 

individually memorized. Evidence for theories is found when categories are created that subjects 

already know something about. 

Unsupervised Categorization 

In an unsupervised problem the learner observes unlabelled examples and must group them into 

categories (also called clusters). 

Such classifications differ culturally in many domains. 

 

One study looking at colour words in different languages found that, although different languages 

had different numbers of colour terms, most languages lay very close to the boundary of near-

optimal trade-offs between informativeness and complexity. 

 

 



Episodic Memory 

Modelling Episodic Memory 

Multi-store models of memory distinguish between sensory, short-term, and long-term memory, 

and attempt to determine the mechanisms by which information is first encoded in and later 

recalled from, one form of memory to another. 

 

The modern form of such multi-store models is known as the Search of Associative Memory (SAM), 

which models the exchange of information between the short-term store (STS) and long-term store 

(LTS). LTS is represented as a matrix containing values for the strengths of the associations formed 

through rehearsal, including pairwise associations among the list words, as well as associations 

between each list word and the list context. List context is conceptualized as the temporal and 

situational setting for a particular list. 

Items enter STS in the order they are presented, while the participant rehearses the items occupying 

STS at any given time, thereby increasing the strengths of the items’ episodic associations in LTS. 

When STS becomes full, each new item displaces one of the old items then occupying STS. Note that 

STS items are NOT displaced in the order they arrived, but rather according to a formula in which the 

probability of being displaced increases with time spent in the STS. 

 



For each unit time an item spends in the STS, it increases its association with: 

• the list context 

• the next item in the STS 

• the previous item in the STS (but by a smaller amount) 

• its own unit (known as self-strength) 

Retrieval of items from the LTS is a two-stage process in SAM. First the item must be ‘sampled’, 

which can be thought of as a subconscious rise in activation of that item, and then it must be 

‘recalled’, which is the process of becoming consciously aware of that item. The probabilities for 

sampling and recalling an item are: 

 

Here 𝑆(𝑖. 𝑗) is the strength of association in the LTS between items 𝑖 and 𝑗, wwhile 𝑆(𝑘, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) is 

the strength of association between item 𝑘 and the context. 𝑊𝑒 and 𝑊𝑐 are parameters that weight 

the relative importance of context and other list items. In the case of recalling the very first item, the 

context alone is used. Once recalled, an item will not be recalled a second time. When there have 

been Max consecutive failures at recall using a particular item as retrieval cues, SAM assumes that 

the simulated participant reverts to using the context alone as a retrieval cue. 

 



The SAM model provides a good empirical match and an explanation for serial order effects in free 

recall of list items. Early list items are recalled more accurately because they spend more time in STS 

than later items (since these are kicked out more quickly once the STS fills up). More recent items 

are better recalled because they are likely to already by in the STS at the time of recall. This effect is 

eliminated by a distraction task, which eliminates the recency but not the primacy effect. Also the 

list length effect is explained because the probability of retrieving any given item during sampling 

decreases if there are more items competing. 

 

SAM can also account for the tendency of subjects to recall items nearby in the list and items that 

are semantically related to each other around the same time, since they will have higher association 

strengths in the LTS (semantic association requires that the original SAM be augmented with a 

semantic-associative matrix, which aids in retrieval). 

 

SAM is a process cognitive model, meaning that it attempts to capture the nature not just of the 

outputs that the recall process produces, but also the storage structures and the algorithm by which 

it is accomplishing the task. This stands in contrast to the probabilistic models you covered in the 



first module of the class, where the emphasis is on identifying the information that are important to 

the task, while remaining agnostic about the algorithms that cognitive system is performing. 

Signal Detection Theory 

Signal detection theory describes the ability of subjects to discriminate between similar items. This is 

a form of recognition rather than free recall memory. 

 

This can be modelled as selecting which of two Gaussian distributions has the largest density at the 

location of the signal. This method is called maximum a posterioi. 

 

Signal detection theory predicts that differentiation is more difficult at the boundary between two 

classes, as the distributions overlap more in that location. This is consistent with data from various 

human experiments, such as shown below for subjects recalling which week an event occurred in. 



 

  



Semantic Memory 
Semantic memory refers to general world knowledge of facts, ideas, meaning and concepts. It is 

distinct from episodic memory, which is our memory of experiences and specific events. 

Feature-Based Methods 

The semantic network was originally proposed as a hierarchical model of semantic memory in which 

concepts were nodes and propositions were labelled links (e.g., the nodes for dog and animal were 

connected via an “is a” link). The superordinate and subordinate structure of the links produced a 

hierarchical tree structure. Accessing knowledge required traversal of the tree to the critical branch, 

and the model was successful in this manner of explaining early sentence verification data from 

humans (e.g., the speed to verify that “a canary can sing” versus “a canary has skin”). However, this 

model is not good at explaining fast negative responses, which the model would predict should be 

slow as it would require complete traversal of the network. 

 

Other semantic network models emphasise the process of spreading activation through all network 

links simultaneously to account for semantic priming phenomena. 

 



Connectionist Networks 

In connectionist models, all concepts are represented across a common set of hidden units. When 

the network learns to associate ‘robin+can’ to ‘sing’ and ‘fly’, associations to other similar words like 

‘canary’ will also be learned. The internal representations for the concepts show progressive 

differentiation, learning broader distinctions first and more fine-grained distinctions later. These 

models also provide a learning mechanism, which feature-based methods typically do not. 

 

The general conclusion that Rogers and McClelland draw from this model is that a number of 

properties of the semantic system, such as the taxonomic structure and of causal knowledge, can be 

explained as an emergent consequence of simple learning mechanisms, and that these structural 

factors do not necessarily need to be explicitly built into models of semantic memory. 

Distributional Models 

There are now a large number of computational models in the literature that may be classified as 

distributional. Other terms commonly used to refer to these models are corpus-based, semantic-

space, or co-occurrence models. The key idea of all such models is that words can be given an 

embedding in an underlying semantic space, which is derived from co-occurrence statistics of the 

words in question. 

Latent Semantic Analysis (LSA) is a very popular technique which first constructs a term-by-

document frequency matrix of a text corpus, in which each row vector is a word’s frequency 

distribution over documents. A document is simply a “bag-of-words”. The matrix is normalised by 

word frequency, then factorized using singular-value decomposition (SVD) into three component 

matrices: 𝑈, Σ, 𝑉. The U matrix represents the orthonormal basis for a space in which each word is a 

point, V represents an analogous orthonormal document space, and Σ is a diagonal matrix of 

singular values weighing dimensions in the space. More commonly, only the top N singular values of 

Σ are retained, where N is usually around 300. A word’s semantic representation is then a pattern 

across the N latent semantic dimensions. 



 

A variation of LSA are topic models. An assumption of a topic model is that documents are generated 

by mixtures of latent “topics,” where a topic is a probability distribution over words. Although LSA 

makes a similar assumption that latent semantic components can be inferred from observable co-

occurrences across documents, topic models go a step further, specifying a generative model for 

documents. The assumption is that when constructing documents, humans are sampling from a 

distribution of universal latent topics. To generate each word within this document, one samples a 

topic according to the document’s mixture weights, and then samples words from that topic’s 

probability distribution over words. To train the model, Bayesian inference is used to reverse the 

generative process: assuming that topic mixing is what generates documents, the task of the model 

is to invert the process and statistically infer the set of topics that were responsible for generating a 

given set of documents. 

 



Other variants use repeated presentation of ‘sliding window’ segments of documents to a neural 

network, which learns compressed representations of particular words through the learned weights 

of the hidden units. 

 

Compositional Semantics 

Traditional distributional methods do not incorporate word order or role binding in embeddings. The 

study of how sentence structure determines role bindings is called compositional semantics. Dennis 

argued that extracting propositional structure from sentences revolves around the distinction 

between syntagmatic and paradigmatic associations. Syntagmatic associations occur between words 

that appear together in utterances (e.g., run fast). Paradigmatic associations occur between words 

that appear in similar contexts, but not necessarily in the same utterances (e.g., deep and shallow). 

The syntagmatic paradigmatic model proposes that syntagmatic associations are used to determine 

that words could have filled a particular slot within a sentence. The set of these words form role 

vectors that are then bound to fillers by paradigmatic associations to form a propositional 

representation of the sentence. 

 



Convergent Cross Mapping 
In nonlinear systems, variable correlation may not be at all related to whether the variables are 

causally connected. The following coupled equations show correlation at some times, anticorrelation 

at other times, and no correlation at all at yet other times. This highlights the need for better 

techniques to assess causal relationships in nonlinear systems. 

 

An alternative approach called convergent cross mapping (CCM) instead tests for causation by 

measuring the extent to which the historical record of Y values can reliably estimate states of X. This 

happens only if X is causally influencing Y. 

It works by first constructing the ‘shadow manifold’ for each variable of interest (in this case 𝑀𝑋 and 

𝑀𝑌 for X and Y respectively), from manifold 𝑀 for the original system. This is done using lagged-

coordinate embeddings of X and Y. Because X and Y are dynamically coupled, points that are nearby 

on 𝑀𝑋 (e.g., within the red ellipse) will correspond temporally to points that are nearby on 𝑀𝑌 (e.g., 

within the green circle). This enables us to estimate states across manifolds using Y to estimate the 

state of X and vice versa using nearest neighbours. 

 



One shadow manifold is used to predict the other by taking a set of 𝐸 points on 𝑀𝑋, and then 

generating a series of predictions of 𝑌 (denoted 𝑌̂|𝑀𝑋) using the equation: 

𝑌̂|𝑀𝑋 = ∑ 𝑤𝑖𝑌(𝑡𝑖)

𝐸

𝑖=0

 

Here 𝑤𝑖 is a weighting based on the distance between 𝑥(𝑡) and its ith nearest neighbor on 𝑀𝑋. 

Effectively, this amounts to assuming that 𝑌 is scattered about the manifold in the same pattern as 

𝑋. If Y can be predicted from X with significant accuracy, we conclude that Y CCM causes X. 

  



Social Network Models 

Introduction to Networks 

Network science as the study of the collection, management, analysis, interpretation, and 

presentation of relational data. The roots of network science are particularly strong in social 

psychology, sociology, and anthropology. The key assumption of network science is that considering 

a set of nodes and ties as an interconnected unit adds analytical value to considering the nodes 

separately or even looking at dyads. 

 

A graph 𝐺(𝑉, 𝐸) consists of a set of nodes/vertices 𝑉 = {𝑖, 𝑗, 𝑘, 𝑙}, and a set of edges/ties 𝐸 =

{{𝑖, 𝑗}, {𝑖, 𝑘}, {𝑘, 𝑗}, {𝑗, 𝑙}}.  

 



Networks can be represented as an adjacency matrix, which will always be square and symmetrical. 

 

Data for constructing network representations can be obtained through a variety of methods, 

including ethnography, archives, surveys, online databases, etc. A common method is called 

sociometric free recall, which involves asking participants to name a certain number of contacts 

(such as friends or workmates). 

Network Characteristics 

Table of key network terminology. 

Concept Formula Explanation Figure 

Node degree 𝑑𝑖 = ∑ 𝑋𝑖𝑗

𝑗

 The number of 
ties of a node. 

 
Graph density 

𝑑(𝐺) =
∑ 𝑋𝑖𝑗𝑖<𝑗

𝑛(𝑛 − 1)/2
 

The total 
number of ties 
divided by the 
number of 
possible ties. 

 
Geodesic 
distance 

min
𝑘

∑ 𝑋𝑖𝑘𝑋𝑘𝑗

𝑘

 The length of the 
shortest path 
between two 
nodes. 

 
Connectedness  A graph is 

connected if 
there is a path 
between any 
two nodes.  

 



Cutpoint (node)  A node that 
connects  
the network. 

 
Bridge (edge)  An edge that 

connects the 
network. 

 
Component  A subgraph that 

is maximally 
connected. 

 
k-clique 𝐶𝑘 = {𝑉𝑖}: 

|𝐶𝑘| = 𝑘, 
∑𝐸𝑖𝑗 = 𝑘(𝑘 − 1) 2⁄  

A subset of k 
nodes that are 
all connected. 
Cliques may be 
overlapping. 

 
Triad 𝑇3: closed triad 

𝑇2: open triads 
A set of three 
nodes. A closed 
triad is a 3-
clique. 

 
Centralisation 
index 

∑|𝑑𝑚𝑎𝑥 − 𝑑𝑖|

𝑖

 

𝑑𝑚𝑎𝑥 = max
𝑖

(𝑑𝑖) 

Measurement of 
how centralised 
ties are about 
few nodes. 

 
Clustering 
coefficient 

3𝑇3

3𝑇3 + 𝑇2
 

Measurement of 
how clustered 
triads are. 

 

  



The degree distribution is an important way to describe how connections are distributed across the 

network. 

 

Random Graphs 

One common strategy in network science is to compare observed networks to randomly generated 

networks that are in some sense ‘similar’ to the observed network, and then analyse the nature of 

the differences between the two. For example, in real networks people do not form ties at random, 

so we can compare how the real network differs from a network where ties are randomly formed. 

 



 

Random Graph Models Table 

Random graph name Formula Description 

Bernoulli random graph 
(BRG) 

𝑋𝑖𝑗  ~ 𝐵𝑒𝑟𝑛(𝑝) 

𝑑𝑖 =  ∑ 𝑋𝑖𝑗

𝑗

~𝐵𝑖(𝑛 − 1, 𝑝) 

Actors form ties completely at 
random with probability equal 
to network density. All nodes 
have same degree distribution. 
 

Conditionally uniform 
density (U|L) 

𝑋 ~ 𝑈|𝐿(𝑋) = 𝑘 Network has a uniform 
distribution of ties, conditional 
on the density. Produced by 
randomly shuffling the 
adjacency matrix. 

Conditionally uniform 
degrees (U|d) 

𝑋 ~ 𝑈|𝑑(𝑋𝑖) Network has a uniform 
distribution of ties, conditional  
on the degree distribution for 
each node. Produced by 
randomly shuffling each row of 
the adjacency matrix. 

Exponential Random 
Graph Model (ERGM) 𝑃(𝑋) = exp [∑ 𝜃𝑠𝑧𝑠(𝑋) − 𝜙(𝜃𝑠) 

𝑠

] 

𝑧𝑠(𝑋): number of feature 𝑠 
𝜃𝑠: weight for feature 𝑠 
𝜙(𝜃𝑠): normalising constant 

A general framework where 
probability of a network is 
given as a weighted sum of 
features 𝑧𝑠. Features can be 
number of edges, two-stars, 
triangles, etc. 

Directed networks: 
Conditional uniform 
(MAN) 

𝑋 ~ 𝑈|𝑀𝐴𝑁(𝑋) Network has a uniform 
distribution of ties, conditional 
on the dyad census. Number of 
mutual (M), asymmetric (A), 
and null (N) dyads is fixed. 

Directed networks: 
Conditionally uniform 
degrees (U|din,dout) 

𝑋 ~ 𝑈|𝑑𝑖𝑛(𝑋𝑖), 𝑑𝑜𝑢𝑡(𝑋𝑖) Network has a uniform 
distribution of ties, conditional 
on the in and out degrees for 
each node. 

 



Balance Theory 

Balance theory predicts that only particular types of network structure will be stable. In particular, it 

says that triads with mismatching connections will not be stable and hence are rarely found in social 

networks. 

 

Imbalances may be resolved by two different means: 

 

The result of such a process will be that strong ties will tend to cluster into cliques. However, weak 

ties do not have the same balance requirements, and so The global structure will tend to be of 

cliques of strong ties, connected by weak ties. 

 

It has been hypothesised that these weak ties are especially important, as they enable ideas or 

goods to flow between cliques across long distances of the network. 

Directed Networks 

Directed networks allow there to be an asymmetry between ‘incoming’ and ‘outgoing’ ties from one 

node to another. These can represent different things in different contexts. IN some cases we might 

expect ties to be bidirectional, while in other cases we might expect intransitive ties (e.g. supply 

chains), and in others unidirectional ties (e.g. mentorship). 



 

In directed networks, there are three different types of dyads. 

 

There are sixteen possible types of triads in a directed network. The distribution of the frequency of 

all types is called a triad census. 

 

Network Contagion and Influence 

Homophily 

Homophily is the principle that a contact between similar people occurs at a higher rate than among 

dissimilar people. The pervasive fact of homophily means that cultural, behavioral, genetic, or 

material information that flows through networks will tend to be localized. While many networks 

show homophily, heterophily is also observed in certain cases, such as customer/supplier 

relationships. 

 



Homophily of trait 𝑦 can be measured as the sum of all tied nodes that have the same value of the 

trait (if 𝑦 is binary). If the trait is a scaled value, then this measures the extent to which high values 

of 𝑦 co-occur in tied nodes. 

𝐻(𝑋) = ∑ 𝑦𝑖𝑦𝑗𝑋𝑖𝑗

𝑖𝑗

 

Homophily in networks can be explained by three main different mechanisms: 

1. Social influence: people who are linked become more like each other. 

2. Propinquity: people affiliated with similar things are similar. 

3. Social selection: people who are similar select out other people like them to form ties with. 

Event-history Analysis 

Social influence can be investigated by studying time series data of networks. One question that can 

be considered (here in the case of innovation adoption) is whether the time to adoption is shorter 

for individuals that have a tie to someone who has already adopted compared to people that do not 

have a tie to someone who has adopted? 

 

We can model the spread of the innovation (or whatever else we are interested in) as an Exponential 

distribution, where the time to adoption 𝑡 of individual 𝑖 is distributed as: 

𝑓(𝑡𝑖) = 𝜆𝑖𝑒−𝜆𝑖𝑡𝑖 

We want to know whether this time changes with the network ties the person has. We can test this 

using the following model: 

𝑡1 − 𝑡0 ~ Exp[𝜆𝑖(𝑌(𝑡0), 𝑋] 

Where 𝑌𝑖(𝑡) is an indicator for whether individual 𝑖 has adopted the innovation by time 𝑡, 𝑋 is the 

network, and 𝜆𝑖 is the rate of adoption for individual 𝑖. We can model the adoption rate as a function 

of the number of ties the individual has with other adopters as follows: 

𝜆𝑖(𝑌(𝑡), 𝑋(𝑡)) = exp[𝛼 + 𝛽𝑎𝑖(𝑌(𝑡), 𝑋(𝑡))] 



There are many possible choices for the influence dependency function 𝑎𝑖. Some common choices 

are shown in the table below. 

Equation name Formula Explanation 

Total exposure 𝑎𝑖(𝑦, 𝑥) = ∑ 𝑦𝑗𝑥𝑖𝑗

𝑗

 The more people you know that have 
adopted, the quicker you will adopt. 

Weighted total 
exposure 

𝑎𝑖(𝑦, 𝑥) = ∑ 𝑦𝑗𝑥𝑖𝑗𝑠𝑗(𝑥)

𝑗

 As above, but with importance weighting 
𝑠(𝑥) for each tie. 

Average exposure 
𝑎𝑖(𝑦, 𝑥) =

∑ 𝑦𝑗𝑥𝑖𝑗𝑗

∑ 𝑥𝑖𝑗𝑗
 

The greater the proportion of people you 
know that have adopted, the quicker you  
will adopt. 

 

The adoption times for the entire network 𝑡1, 𝑡2, … , 𝑡𝑘  are descripted by the likelihood function, 

which is the product of the individual pdfs: 

∏ 𝜆𝑖(𝑌(𝑡𝑖), 𝑋(𝑡𝑖))

𝑘

𝑖=1

exp [− ∑ 𝜆𝑖(𝑌(𝑡𝑖), 𝑋(𝑡𝑖))(𝑡𝑖 − 𝑡𝑖−1)

𝑘

𝑖=1

]

× ∏(1 − exp[−𝜆𝑖(𝑌(𝑡𝑖), 𝑋(𝑡𝑖))(𝑡𝑖 − 𝑡𝑖−1)])

𝑘

𝑖=1

 

Parameters can be estimated using Maximum likelihood or Bayes. 

Auto-correlation Models 

When estimating network regression models, it is important to pay close attention to the residual 

terms. Consider a simple regression model: 

𝑌𝑖 = 𝛼 + 𝛽𝑀𝑖 + 𝜖𝑖  

𝜖𝑖 ~ 𝑁(0, 𝜎2) 

Where 𝑀𝑖 is some variable of interest for individual 𝑖 in the network 𝑋. 

The problem with this simple model is that error terms are unlikely to be independent, as we have 

ignored the effects of the network. Tied individual are more likely to be similar in various ways, and 

so probably will have correlation error terms. This can be tested by examining the autocorrelation 

figure (past index 1, which is just the node itself): 

 



To deal with this correlation, we can instead estimate an autocorrelation model: 

𝑌𝑖 = 𝛼 + 𝛽𝑀𝑖 + 𝜖𝑖  

𝜖𝑖 = 𝜌 ∑ 𝑋𝑖𝑗𝜖𝑗
𝑗

+ 𝜉𝑖  

𝜉𝑖 ~ 𝑁(0, 𝜎2) 

One problem with this formulation is that more connected nodes have higher errors. To deal with 

this we can scale by the total number of ties: 

𝑌𝑖 = 𝛼 + 𝛽𝑀𝑖 + 𝜖𝑖 

𝜖𝑖 =
𝜌 ∑ 𝑋𝑖𝑗𝜖𝑗𝑗

∑ 𝑋𝑖𝑗𝑗
+ 𝜉𝑖  

𝜉𝑖  ~ 𝑁(0, 𝜎2) 

An alternative to modelling interaction through the error terms, we can model it directly through the 

main part of a more complex social influence model: 

𝑌𝑖 = 𝜌 ∑ 𝑋𝑖𝑗𝜖𝑗
𝑗

+ 𝛼 + 𝛽𝑀𝑖 + 𝜖𝑖 

𝜖𝑖 ~ 𝑁(0, 𝜎2) 

Network Empirical Techniques 

Negative Ties 

A negative tie is a connection which conveys something detrimental, such as harm or hostility. They 

are often rarer than positive ties, and have been less often studied, but can be very important. 

Networks with both positive and negative ties are called signed networks. Dynamics of negative and 

signed ties are qualitatively different. For example, while we might expect positive ties to be 

protective against reciprocation with negative ties, the opposite is often true; esteem ties tend to be 

reciprocated with disesteem ties. 

 

Assessing negative ties through data can be very difficult, because of different social perceptions. 

For example, Tatum and Grund (2019) find there is very little corroboration between perceptions of 

whom a teen student feels they are bullying and those presumed victims expressing that they are 

the targets of that individual’s behaviours. Also, it is notoriously difficult to get people to provide 

negative nominations.  



Much research indicates that negative ties have pervasive effects throughout the network, as people 

tend to avoid negative ties and hence they hinder the function of the entire network. The dynamics 

of negative ties is also different than for positive ties, since fully connected triads are unbalanced, 

and negative ties are less often reciprocated, since avoidance is typically easier. 

 

 

Multiplex Ties and Nodes 

Some graphs include multiple different types of ties. These could be positive and negative, or simply 

different types of connections, like co-workers and friends.  

 

Networks can also have different types of nodes, such as individuals and organisations, or buyers 

and sellers. Two-mode networks are a special case of this, where there are two types of nodes, and 

ties are only allowed between nodes of different types. Adjacency matrices are no longer square. 



 

This can be extended by combining two-mode networks with one-mode networks within similar 

types of nodes (compare black ties with red ties). 

 

One study, for example, used this approach to study researcher advice and laboratory collaboration 

relationships for French cancer researchers. 

 



Valued Networks 

In valued networks, ties are no longer binary, but can take a range of different values. This makes it 

difficult to apply many of the existing techniques and concepts for traditional graphs. For example, in 

the triads shown below, which is more transitive? It is unclear how to think about this. 

 

Actor-oriented Models 

A dynamic network consists of ties between actors that change over time. These models are 

constructed using longitudinal data and assume that actors in the network actively take steps to 

change ties and shape the ties in the network. The changing network can be interpreted as the 

outcome of a Markov process, i.e., that for any point in time, the current state of the network 

determines probabilistically its further evolution. The model has directed ties, where each tie has a 

sender, who controls the sending of the tie, and a receiver. 

The model works by assuming that at each point in time, every tie 𝑡𝑖 has the probability of changing 

that is distributed according to the state of the network 𝑋: 

𝑡𝑖 ~ exp[𝜆𝑖(𝑋)] 

The function 𝜆 will typically include a range of effects, which are functions of the network that are 

chosen based on theory and subject-matter knowledge. 

 

The results of such models can be used to determine the magnitude of social selection versus social 

influence effects. 


